
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335935256

GodExpo: An Automated God Structure Detection Tool for Golang

Conference Paper · May 2019

DOI: 10.1109/IWoR.2019.00016

CITATIONS

0
READS

5

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Software Design Migration from Procedural to Object Oriented Programming View project

Software Test Case Prioritization View project

Moumita Asad

University of Dhaka

1 PUBLICATION   0 CITATIONS   

SEE PROFILE

Asadullah Hill Galib

University of Dhaka

1 PUBLICATION   0 CITATIONS   

SEE PROFILE

Kishan Kumar Ganguly

University of Dhaka

7 PUBLICATIONS   7 CITATIONS   

SEE PROFILE

Saeed Siddik

University of Dhaka

17 PUBLICATIONS   44 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Moumita Asad on 30 September 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335935256_GodExpo_An_Automated_God_Structure_Detection_Tool_for_Golang?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335935256_GodExpo_An_Automated_God_Structure_Detection_Tool_for_Golang?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Design-Migration-from-Procedural-to-Object-Oriented-Programming?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Test-Case-Prioritization?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moumita_Asad?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moumita_Asad?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Dhaka?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moumita_Asad?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asadullah_Galib?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asadullah_Galib?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Dhaka?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asadullah_Galib?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kishan_Ganguly?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kishan_Ganguly?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Dhaka?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kishan_Ganguly?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saeed_Siddik?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saeed_Siddik?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Dhaka?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saeed_Siddik?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moumita_Asad?enrichId=rgreq-62a93aaaf3c5feea34bdd9318c5343e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkzNTI1NjtBUzo4MDg4NjExNTM4OTAzMDVAMTU2OTg1ODkzNTYxNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


GodExpo: An Automated God Structure Detection
Tool for Golang

Rafed Muhammad Yasir, Moumita Asad, Asadullah Hill Galib, Kishan Kumar Ganguly, and Md. Saeed Siddik

Institute of Information Technology, University of Dhaka, Bangladesh
{bsse0733, bsse0731, bsse0712, kkganguly, saeed.siddik}@iit.du.ac.bd

Abstract—God Class is a class that threatens maintainability
and understandability of code by performing most of the work
alone. Various tools exist that can detect God Class of Java or
C++ programs, however, there is no existing tool for detecting
God Class(Structure) in Golang. Although Golang is not an
object-oriented language, it offers structures which are similar
to classes in OOP as they can contain fields and methods. Unlike
OOP, methods of a structure can be defined on any file in the
package of Golang. This paper presents a tool entitled GodExpo
to detect God Structures in Golang programs by calculating
metrics namely Weighted Method Count, Tight Class Cohesion,
and Access to Foreign Data. In addition, GodExpo can provide
version wise result to observe the evolution of God structures.
To evaluate GodExpo, an experiment has been conducted on
several versions of two open source Golang projects and the tool
successfully found God structures in all versions of those projects.

Keywords—God Class, Code Smell, Golang, OOP Metrics

I. INTRODUCTION

Golang is an open source programming language developed
and maintained by Google [1]. Since Golang is not an object-
oriented language, it does not have polymorphism or inheri-
tance. However, it offers encapsulation with structures (structs)
which are similar to classes [2]. This design of Golang results
in simpler code [2], which has rapidly increased its popularity
[3]. Several renowned projects like Docker and Kubernetes are
written in Golang [4]. As Golang’s popularity increases, code
smell detection tool in Golang is crucially required, which will
help developers to maintain code quality [5].

Code smell refers to pattern or aspect of design in a software
system that may cause problems for further development and
maintenance of the system [6]. Among all other smells, God
Class is one of the most studied smells in software engineering
literature [7]. According to Lanza and Marinescu, the classes
that tend to centralize the intelligence of the system are
called God Classes [8]. A God Class performs most of the
work, assigns only minor details to a set of trivial classes
and uses the data from other classes [8]. It exhibits high
complexity, low cohesion and heavy access to foreign classes
data. It violates the single responsibility principle - “a class
should have only one reason to change” [9]. Olbrich et al.
specified that God Classes tend to be very large, which makes
the system more difficult to understand [6]. They found that
defects and changes occur more frequently in God Classes
than other kinds of classes. Therefore, it is important to detect

and refactor God Classes(Structs) for improving source code
quality and maintainability. Various tools have been proposed
to detect God Classes specially in OOP (e.g., JDeodorant [10]
for Java, inFusion [5] for C++, etc.). However, there is no
existing tool that can detect God classes(Structs) in Golang.
In Golang, structs are similar to OOP Classes, which contains
both attributes and methods.

This paper presents a tool named GodExpo that can au-
tomatically detect God Structs for Golang by calculating
Weighted Method Count, Tight Class Cohesion, and Access
to Foreign Data metrics. In addition, GodExpo can provide
version wise result to observe the evolution of God Structs.
GodExpo has been executed on several versions of two Golang
projects namely Hugo [11] and Mattermost [12]. It has suc-
cessfully detected God Structs in all versions of these two
projects. The results further show that there is an increase
in the number of God Structs with the evolution of different
versions of the projects.

II. TECHNIQUE

GodExpo uses three different metrics namely Weighted
Method Count (WMC), Tight Class Cohesion (TCC) and
Access To Foreign Data (ATFD) [8] to detect God Structs.
These metrics are calculated by static code analysis and used
to infer whether a struct is a God or not based on Equation
(1) [8].

GC(C) =

{
1, ((WMC(C) ≥ 47) and ((TCC(C) < 0.3) and ((ATFD(C) > 5)
0, otherwise

(1)

Where,
• C is the class being inspected.
• Weighted Method Count (WMC(C)) is the sum of the

cyclomatic complexity of all methods in C [13].
• Tight Class Cohesion (TCC(C)) indicates the relative

number of directly connected methods in C [6] presented
in Equation (2).

TCC(C) = NDC(C)/NP (C). (2)

Where,
– NP(C) represents the maximum possible number

of direct or indirect connections in a class. Two
methods are directly connected if there exists
one or more common instance variables between
them. Two methods are indirectly connected if they
are linked via other directly connected methods [14].



Let, N be the number of methods in a class.
NP (C) = N ∗ (N−1)/2. (3)

– NDC(C) is the number of direct connections.
• Access to Foreign Data (ATFD(C)) represents the number

of foreign class attributes that are directly accessed by
class C or via accessor methods.

Instead of class, GodExpo applies Equation (1) on Golang
structs.

GodExpo performs The following three steps to detect God
Structs as shown in Figure 1:

Figure 1 Flowchart of GodExpo

1) Creation of Abstract Syntax Tree: In this step, all go
source files are traversed and an Abstract Syntax Tree
(AST) is created from each file. To make this task easier,
go/parser1 package is used. By taking source code as
input, it provides an AST as output. The ASTs are used
in the next step for identifying structs and methods.

Figure 2 Example of Receiver

2) Collection of Struct and Method Data: This step
extracts all structs and methods from an AST using
package go/ast2 and go/token3. For each struct, its name,
package, fields, and location in the project are extracted.
For each method, its name, corresponding struct, pack-
age, receivers and other structs accessed are extracted.
Receiver is like a parameter to a function [15] which

identifies the corresponding struct of a method. In Figure
2, the DisplayTax() method has a receiver named em-
ployee of type Employee. In addition, this method has
accessed another struct of type TaxCalculator. Unlike
OOP, methods of a struct can be defined on any file of the
package in Golang [16]. Nevertheless, the complexities of
all methods must be added to calculate WMC. Therefore,
the methods are mapped to structs by matching their
struct name and package name.

3) Metrics Calculation: In this step, WMC, TCC and
ATFD for a struct are calculated. Based on Equation (1),
GodExpo decides whether the struct is God or not.

III. USAGE

GodExpo has been created as a command line tool. It is
publicly available at: https://github.com/rafed123/GodExpo. It
comes with the following features:
a) Show struct summary.
b) Find God Structs.
c) Show evolution of God Structs.
d) Set custom thresholds for metrics calculation.

A. Show Struct Summary
To summarize the structs of a go file, run the following

command, where file.go is the file to be analyzed.

. / godExpo −f f i l e . go

The output will show all the structs names, packages, and
methods. For each method, its complexity and number of fields
accessed are shown. Figure 3 shows a sample output, where
the struct connection belongs to the livereload package. The
struct has three methods namely close(), reader(), and writer().
The complexities of the methods close(), reader(), and writer()
are 1, 4 and 3 correspondingly. They have accessed 1, 2 and
2 fields respectively from their struct. None of these methods
accessed any field from other structs.

Figure 3 Struct Summary

B. Find God Structs
To find God Structs in a project, run the following com-

mand, where directory is the project path.

. / godExpo −d d i r e c t o r y

The output will show the number of God Structs and their
WMC, ATFD and TCC. A sample output is shown in Figure
4, where transformedResource struct from resource package
is a God Struct. Its WMC, ATFD, and TCC are 50, 12, and
0.290909 respectively. This struct can be found at line number
6 of transform.go file inside the hugo-0.50/resource directory.

1 https://golang.org/pkg/go/parser
2 https://golang.org/pkg/go/ast

3 https://golang.org/pkg/go/token



Figure 4 God Structs found in the specified project

C. Show Evolution of God Structs
The evolution of God Structs over different releases of the

project can be shown by GodExpo. To see the evolution, run
the following command:

. / godExpo −e d i r e c t o r y

Here, directory contains different releases of a particular
project. For each release, the WMC, ATFD, and TCC of a
God Struct are shown. Figure 5 shows the evolution of the
God Struct commandeer from package commands. The first
column of the output shows the version number (e.g., hugo-
0.25) and the next three columns show WMC, ATFD, and
TCC of the struct in that particular version. In this case, the
WMC and ATFD are increasing, whereas TCC is decreasing.

Figure 5 Evolution of a God Struct

D. Set Custom Thresholds for Metrics Calculation
The thresholds for WMC, ATFD, and TCC for detecting

God Structs are 47, 5 and 0.3 respectively [8]. However, these
thresholds may vary from project to project. Schumacher et
al. found that in their experiment, they could achieve 100%
precision in God Class detection by manually setting ATFD
to 10 [17]. Hence, GodExpo has provision for customizing
metrics threshold. These thresholds can be changed by adding
the following arguments when running GodExpo.

• “-wmc number”: Set customized WMC threshold
• “-atfd number”: Set customized ATFD threshold
• “-tcc number”: Set customized TCC threshold

Here, number represents the customized threshold value.

IV. EVALUATION

A. Dataset Description
To evaluate the tool, it has been executed on seven different

versions of two popular Go projects.

1) Hugo: It is a static HTML and CSS website generator
written in Go [11].

2) Mattermost: Mattermost is an open source, private
cloud, Slack-alternative [12].

Table 1 presents information regarding these two projects.
Number of files, LOC, and lines of comment have been
counted using SLOC tool 4. The average LOC of Hugo and
Mattermost are 45643 and 777008 respectively.

TABLE 1 Information about the Projects

Project
name

Number
of stars Version Number

of files LOC Comments

Hugo
31704
(as of

10 Jan 2019)

v0.20 188 33956 4725
v0.25 286 39343 6101
v0.30 302 41798 6565
v0.35 313 45345 7258
v0.40 341 49221 7806
v0.45 382 53606 8900
v0.50 417 56230 9584

Mattermost
13886
(as of

10 Jan 2019)

v5.0.0 2325 732649 87393
v5.1.0 2362 748446 88740
v5.2.0 2510 779069 97872
v5.3.0 2518 785248 98693
v5.4.0 2540 789929 98917
v5.5.0 2540 789923 98917
v5.6.0 2614 813789 101235

B. Findings
The findings of the projects are summarized in Table 2.

GodExpo has successfully detected a number of God Structs
in all versions of the two projects.

TABLE 2 Findings of the Projects

Project
Name Version Total Number

of Structures
Number of God

Structures Detected

Hugo

v0.20 162 4
v0.25 206 5
v0.30 224 4
v0.35 233 7
v0.40 280 7
v0.45 343 8
v0.50 369 7

Mattermost

v5.0.0 4626 51
v5.1.0 4693 52
v5.2.0 5151 59
v5.3.0 5219 59
v5.4.0 5238 59
v5.5.0 5238 59
v5.6.0 5611 60

Figure 6 shows that as the number of version increases, the
number of God structs generally also increases. This observa-
tion conforms to the finding of [18] that the total number of
design smells increase with time. Nevertheless, there are two
declining points in version 0.30 and version 0.50 of Hugo
project. Because, in version 0.25, commandeer struct from
the commands package was a God Struct but two methods
were removed from the struct in version 0.30. As a result, its
WMC decreased and it was not a God Struct anymore. On
the other hand, in version 0.45, shortcodeHandler struct was

4 https://github.com/flosse/sloc



identified as God Struct. Through manual inspection, we found
that the struct was no longer a God Struct in version 0.50 due
to refactoring.

(a) Hugo

(b) Mattermost

Figure 6 Number of God Structs Detected in Different Versions of
the Two Projects

V. RELATED WORK

There exist various tools namely JDeodorant [10] [19],
inFusion [5], PMD [5], and JSpIRIT [20] that can detect God
Class. JDeodorant is an open source Eclipse plugin for Java. It
can detect four code smells: God Class, God Method, Feature
Envy, and Type Checking [19]. inFusion is a commercial
standalone tool for C, C++ and Java to detect God Class along
with 21 other smells [5]. PMD is an open source tool for
Java and an Eclipse plugin that detects various smells in Java
code, including God Class and God Method [5]. JSpIRIT is
an Eclipse plugin for Java that identifies and prioritizes ten
code smells, including God Class [20].

To the best of our knowledge, there is no existing tool for
God Struct detection of Go programs. Hence, GodExpo is the
first tool in Golang to detect God Structs as well as provide
version wise result to observe the evolution of God Structs.

VI. CONCLUSION

This paper presents a command-line tool GodExpo for
automatically detecting God Structs in Golang. In addition,
GodExpo can provide version wise result to observe the
evolution of God Structs. To evaluate GodExpo, it has been
executed on seven different versions of two Golang projects

namely Hugo [11] and Mattermost [12]. It has successfully
detected God Structs in all versions of these two projects. The
source code of GodExpo and the dataset are publicly available.
Therefore, it will facilitate experiment reproduction as well as
conducting comparative studies for further research. In future,
GodExpo will be improved to handle anonymous structures as
well as provide refactoring suggestions.

REFERENCES

[1] The Go Project. Retrieved October 20, 2018, from
https://golang.org/project/

[2] Seguin, K. (2014). The Little Go Book. Retrieved November 22, 2018,
from https://www.openmymind.net/assets/go/go.pdf

[3] The Go Blog. (2017, November 10). Retrieved October 21, 2018, from
https://blog.golang.org/8years

[4] Frequently Asked Questions (FAQ). Retrieved March 14, 2019, from
https://golang.org/doc/faq#Usage

[5] Paiva, T., Damasceno, A., Figueiredo, E., & SantAnna, C. (2017). On
the evaluation of code smells and detection tools. Journal of Software
Engineering Research and Development, 5(1), 7.

[6] Olbrich, S. M., Cruzes, D. S., & Sjoberg, D. I. (2010, September). Are
all code smells harmful? A study of God Classes and Brain Classes
in the evolution of three open source systems. 2010 IEEE International
Conference on Software Maintenance (ICSM) (pp. 1-10). IEEE.

[7] Santos, J. A. M., de Mendona, M. G., Dos Santos, C. P., & Novais, R. L.
(2014). The problem of conceptualization in god class detection: agree-
ment, strategies and decision drivers. Journal of Software Engineering
Research and Development, 2(1), 11.

[8] Lanza, M., and Marinescu, R. (2007). Object-oriented metrics in prac-
tice: using software metrics to characterize, evaluate, and improve the
design of object-oriented systems. Springer Science & Business Media.

[9] Martin, R. C. (2002). Agile software development: principles, patterns,
and practices. Prentice Hall.

[10] Fokaefs, M., Tsantalis, N., Stroulia, E., & Chatzigeorgiou, A. (2011,
May). JDeodorant: identification and application of extract class refactor-
ings. In 33rd International Conference on Software Engineering (ICSE)
(pp. 1037-1039). IEEE.

[11] Hugo. Retrieved January 19, 2019, from
https://github.com/gohugoio/hugo

[12] Mattermost. Retrieved January 19, 2019, from
https://github.com/mattermost/mattermost-server

[13] Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for Object
Oriented Design. IEEE TSE, 20 (6), 476-493.

[14] Bieman, J. M., & Kang, B.-K. (1995). Cohesion and Reuse in an Object-
Oriented System. Proc. Int’l Symp. Software Reusability, (259-262).

[15] Doxsey, C. (2012). An introduction to programming in Go. CreateSpace.
[16] Aimonetti, M. Go Bootcamp Everything you need to know

to get started with Go. Retrieved January 31, 2019, from
http://www.golangbootcamp.com/book/methods

[17] Schumacher, J., Zazworka, N., Shull, F., Seaman, C., & Shaw, M.
(2010, September). Building empirical support for automated code smell
detection. In Proceedings of the 2010 ACM-IEEE Int. Symposium on
Empirical Software Engineering and Measurement (p. 8).

[18] Chatzigeorgiou, A., & Manakos, A. (2010, September). Investigating the
evolution of bad smells in object-oriented code. In International Con-
ference on the Quality of Information and Communications Technology
(pp. 106-115). IEEE.

[19] Tsantalis, N., Chaikalis, T., & Chatzigeorgiou, A. (2008, April).
JDeodorant: Identification and removal of type-checking bad smells. In
12th European Conference on Software Maintenance and Reengineering
(CSMR) 2008. (pp. 329-331). IEEE.

[20] Vidal, S., Vazquez, H., Diaz-Pace, J. A., Marcos, C., Garcia, A.,
& Oizumi, W. (2015, November). JSpIRIT: a flexible tool for the
analysis of code smells. In 34th International Conference of the Chilean
Computer Science Society (SCCC)(pp. 1-6). IEEE.

4

View publication statsView publication stats

https://www.researchgate.net/publication/335935256

