

SYNCER: A FILE HOSTING
SERVICE

i

Syncer: A File Hosting Service

Course: Software Project Lab II (SE 505)

Submitted by

Team Yazilim

Moumita Asad (731)

Rafed Muhammad Yas ir (733)

Supervised by

Dr. B M Mainul Hossain

Assistant Professor

IIT, DU

Institute of Information Technology

University of Dhaka

10th May, 2017

ii

Table of Contents

Chapter 1: Project Definition .. 1

1.1 Introduction .. 1

1.2 About the Project .. 1

1.3 Definitions ... 2

Chapter 2: Implementation Overview .. 4

2.1 Technology used ... 4

2.2 Scope and Assumptions .. 4

2.3 Implementation Description ... 5

2.3.1 Protocols .. 6

2.4 Constraints .. 8

Chapter 3: Source Code Description ... 10

3.1 Server side classes ... 10

3.2 Client side classes .. 14

3.3 Common classes .. 18

Chapter 4: User Manual .. 21

Chapter 5: Conclusion and Implementing Limitation ... 29

iii

List of Figures

Figure 1 Client-Server Architecture .. 2

Figure 2 Socket .. 3

Figure 3 Syncer Installer .. 21

Figure 4 Login Panel .. 21

Figure 5 Registration Panel ... 22

Figure 6 Syncer Directory at Desktop ... 23

Figure 7 My Files Panel ... 23

Figure 8 Sharing Files .. 24

Figure 9 File History .. 24

Figure 10 My Shared Files ... 25

Figure 11 Publicly Shared Files .. 25

Figure 12 Change Password Panel .. 26

Figure 13 Forgot Password Panel ... 27

Figure 14 Approving Account Panel .. 27

Figure 15 Removing Existing Users Panel ... 28

iv

List of Tables

Table 1 Authentication class ... 10

Table 2 Registration class .. 10

Table 3 Server class ... 11

Table 4 Database class .. 11

Table 5 Email class .. 14

Table 6 User class .. 14

Table 7 Admin class ... 15

Table 8 ClientProgram class .. 15

Table 9 ChangeDetector class ... 16

Table 10 ChangeHandler class .. 16

Table 11 InitialSync class ... 17

Table 12 ConnectionHandler class (Client side).. 18

Table 13 ConnectionHandler class (Server side) .. 19

Table 14 Zipper class ... 20

Table 15 Utils class .. 20

1

Chapter 1: Project Definition

This chapter describes the project definition of our project.

1.1 Introduction

Often we need to work on a document from different places. But for that, we have the hassle of

downloading the file before use and uploading it after each modification. To tackle this issue we

have created this program called Syncer that will synchronize files in multiple pcs. If a change is

made to a file in one pc, the files in other pcs will also be updated. If necessary a user can also

share a file with others.

1.2 About the Project

Syncer is a file hosting service. At first, users have to install the client program. Only registered

users can use this program. After registration, an admin approves new accounts. Admin may also

remove existing users. Each user has a username and password. Whenever a user wants to login,

he/she must be authenticated by the server. When a user logs in for the first time, a directory

named “Syncer” is created in his home directory. From then, whenever a user logins, Syncer

starts syncing files/folders with the server in the Syncer directory. Any files or folders placed in

that directory is uploaded to the server. Whenever the client program detects any change, it

notifies the server. The server then updates files accordingly and notifies other users who have

access to these files. Thus the server file contents is always in sync with the client. A user can

install the client program on multiple computers. In that case when he changes a file from one

computer, it is also updated in other computer.

A file can be shared publicly or with other users. A user must approve before any shared file is

stored in their directories.

A user can also view which users are online now.

A history table is maintained for all files. Any changes made is recorded. Information such as last

modified date, modified by, size are stored.

2

This system can be used by anyone. Teachers may use it to share their lectures with students. In

an office where many people are working on a project can use this system for managing their

project.

1.3 Definitions

Server: A server is a computer program that provides services to other computer programs (and

their users) in the same or other computers [1]. Though any computer running special software

can function as a server, usually server references very large, high-powered machine that

functions as the pump pushing and pulling data across the internet.

Client: A client is a computer that retrieves information from or uses resources provided by the

server or main computer [2].

Client and server may run on the same machine and connect via inter-process communication

techniques. They may also run on different machine and communicate via socket.

Figure 1 Client-Server Architecture

Port number: A port number is a way to identify a specific process to which an Internet or other

network message is to be forwarded when it arrives at a server [3]. Port number is a 16-bit integer.

3

1024 well-known port numbers are reserved by convention to identify specific service types on

a host.

IP address: An IP address is a binary number that uniquely identifies computers and other devices

on a TCP/IP network [4]. Version 4 of the Internet Protocol (IPv4) defines an IP address as a 32-bit

number. However, because of the growth of the Internet a new version of IP (IPv6), using 128

bits for the IP address has been developed.

Socket: A socket is one endpoint of a two-way communication link between two programs

running on the network. A socket is bound to a port number so that the TCP layer can identify

the application that data is destined to be sent to [5]. A socket is a combination of an IP address

and port number.

Figure 2 Socket

Synchronization: Process of making two or more data storage devices or programs in the same

or different computers having exactly the same information at a given time [6].

File hosting service: A file hosting service is an Internet hosting service specifically designed to

host user files. It allows users to upload files that could then be accessed over the internet from

a different computer, tablet, smart phone or other networked device, by the same user or

possibly by other users, after a password or other authentication is provided [7]. It can be used

for various purpose.

 keeping back-up copies of file

 allowing users to create special folders on each of their computers so that it appears to

be the same folder regardless of which computer is used to view it.

https://en.wikipedia.org/wiki/Internet_hosting_service
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Smart_phone

4

Chapter 2: Implementation Overview

This chapter discusses what technology was used, how the product was implemented and what

the constraints were.

2.1 Technology used

Most of the source code is written in Java. A minor portion is written in Python. For the database

MySQL has been used.

Some Java APIs were used to make development easier. Watchevent API was used for change

detection, JavaMail API for sending mail and Swingx API for improving UI.

2.2 Scope and Assumptions

Requirements of developing a file synchronizing system is quite big. It cannot be implemented

within a short timespan. So, to make things simpler we made our project scope smaller and

avoided handling some exceptional and critical cases.

Scope

The scope of our project is:

I. The program will run only for Linux distributions.

II. File modification change will be only detected if it was modified by gedit.

III. Users are only allowed to create new files or modify existing in the Syncer directory while

they are offline.

IV. Only files can be shared.

V. It is not possible to share file to a group.

VI. Users are not allowed to rename shared files.

VII. If a user cancel sharing a file, it will not be deleted from client.

VIII. Deleted files cannot be recovered.

5

Assumptions
The assumptions we have made are:

I. The underlying network is completely reliable. No communication failure will occur.

II. Users will not create/modify/delete files very rapidly or in a very short interval of time.

III. Two users will not modify a file exactly at the same time.

IV. Users will not delete or rename a file in the Syncer directory while they are offline.

V. Users will not place their files inside Shared directory.

VI. Only one user will use Syncer from a computer.

VII. File names will not contain comma (,).

2.3 Implementation Description

The program written has two portions- the server side code that is run on the server, and the

client side code which is run by the users of the program. The total implementation procedure in

short is as following:

I. Made a change detector that detects change made to a file.

II. Created a multi-threaded server that stores file of users and communicates with the

clients.

III. Created a client program that connects with the server.

IV. Created a protocol that the server and client uses to communicate and exchange files and

folders.

V. Created a database that keeps information about users and files that are exchanged and

shared with other users.

VI. Created a mechanism for registration and authentication

VII. Created a mechanism for sending Emails when an admin approves a user.

6

VIII. Made a file compression/extraction mechanism that is used when files are transferred,

thus reducing network overhead and increasing performance

2.3.1 Protocols

The server and client communicates through some messages. The message sets that client can

send to a server are:

I. Registration/Authentication messages

1. “cookie”, cookie number

2. “register”, name, username, password, email

3. “authenticate”, username, password

4. “logout”

5. “close”

6. “forgot-pass”, username

7. “change-pass”, new password

II. File transfer messages

1. “folder-created”, path, filename

2. “file-created”, path, filename

3. “file-modified”, path, filename

4. “file-deleted”, path, filename

5. “file-renamed”, path, from filename, to filename

III. Admin messages

1. “user-approval”, username, decision

2. “user-delete”, username

7

3. “pending-users”

IV. User activity messages

1. “who-are-online”

2. “file-history”, path, filename

V. Private share messages

1. “view-pending-requests”

2. “view-my-shares”

3. “shared-with-me”

4. “private-share-add”, share with, path, filename

5. “approve-share”, shared by, file id, approval message (accept/reject)

6. “share-file-privately”, path, filename, share with

VI. Public share messages

1. “public-shares”

2. “public-share-add”, path, filename

3. “public-download”, file id

VII. Other messages

1. “cancel-share”, share type, file id, shared with

2. “initial-sync”

3. “userlist”

Depending on the messages of the client, the server respond. The server can send the following

set of messages:

I. File transfer messages

8

1. “folder-created”, path, filename

2. “file-created”, path, filename

3. “file-modified”, path, filename

4. file-deleted”, path, filename

5. “file-renamed”, path, from filename, to filename

II. Acknowledgement messages

1. “OK” - the client request is successful/client can send the file

2. “NO” - the client request is unsuccessful/client cannot send the file

3. “DONE” - the server has completed the initial sync

Depending on a message a server or client gives a reply and performs an action.

2.4 Constraints

There were enormous challenges that we faced during the implementation phase of the project.

The constraints we faced are mention below.

1. Our knowledge about server client architecture was definitely not enough to implement

this project. We learned as we went. But this learning curve was very steep and time

consuming. This slowed down the pace of development. Also, solutions to some problems

were made by ourselves as we did not find them. At times even these solutions proved to

be faulty.

2. Debugging was near to impossible. Debugging when multiple threads are running are so

difficult to keep track of. On top of that, multiple clients were connected making it quite

impossible to use a debugger. All debugging was done manually which was a very

laborious work. We also experienced heisenbugs (heisenbug is a classification of an

unusual software bug that disappears or alters its behavior when an attempt to isolate it

is made [8]).

9

3. Managing multiple connections was a big difficulty. Socket streams often collided giving

unexpected results.

4. The protocol we designed failed at some cases which gave rise to new sets of messages

in the protocol. With the increase in protocol messages, things got more complicated.

5. For change detection we used a WatchEvent API that comes with Java 7. This API does

not work properly for Linux distributions. And as we were working for Linux distributions

it failed us. We had to create our own change detector modifying this API.

All the above problems that we faced were big impediments for our project. It slowed down the

development pace to a great extent and completion of the project seemed impossible at times.

10

Chapter 3: Source Code Description

The program is written in object oriented style. As a result the source code is formed by many

classes. The classes that were made and their methods are described below.

3.1 Server side classes

The server side program consists the following classes.

I. Authentication: Activities related to login events are done in this class. It’s methods are-

Table 1 Authentication class

No Method Name Method Description

1 createCookie() creates a unique cookie for a user

2 verifyUser() matches the username and password for a

user

3 generateRandomPassword() generates a random password for a user

when a user prompts that he has forgotten

his password

II. Registration: Activities related to registering a user are done in this class. It’s methods are-

Table 2 Registration class

No Method Name Method Description

1 checkIfUsernameExists() checks during registration whether the name

supplied by the user is unique or not

2 registerUser() registers a new user who is to be approved

by the admin later so that he can use syncer

3 updateUser() it can update any attribute of a user (name,

email, password)

4 notifyAdmin() sends admin a list of registered users who

are yet to be approved to use syncer

11

III. Server: The server class is the starting point of the server program. It mainly listens for

inbound connections so that clients can connect. It’s methods are-

Table 3 Server class

No Method Name Method Description

1 listenForConnections() accepts connection from a client

2 synchronizeFilesWithOnlineUsers() when a change is made to a file, this method

sends the file to available online users who

are supposed to receive this file

3 compareFileDates() checks for the modification date of a file and

decides which is the

latest

4 updateSessionTables() this method keeps track of users who are

online currently and

updates the database accordingly

5 sendToOwners() Sync files with owners who are online

6 sendToSharedUsers() Sync files with shared users who are online

7 run() listening for connections is required to run in

a thread, so the server class had

to implement the Runnable interface so that

it could be run in a thread

IV. Database: The wrapper class for CRUD operations (create, retrieve, update, delete) on the

database. It has the following methods.

Table 4 Database class

No Method Name Method Description

1 addUser() adds a new user in the database

12

2 removeUser() removes an existing user from the database

3 updateUser() updates an attribute of a user

4 retrievePendingUsers() returns a list of users who are not yet

approved by the admin

5 addSession() creates a login session for a user

6 deleteSession() deletes a login session for a user

7 checkIIfSesssionExists() checks if a session is still valid for a user

8 updateLastOnline() updates the last online time of a user

9 checkIfFilesExists() checks if a file sent by a user already exists on

the server

10 addFileEntry() adds information about a newly created file

in the database

11 deleteFileEntry() deletes info about a file

12 updateFileEntry() updates attributes of a file when they are

changed

13 updateForFolderRename() this method is called when a folder is

renamed and thus the path all the files and

folders under this folder needs to be

renamed

14 addHistory() records the modification event that occurred

on a file

15 retrieveFileHistory() gets the edit history of a file

16 addShare() when a user shares a file this method is

called to do it

17 deleteShare() deletes a share of a user

18 updateShare() called when a user with whom the file has

been shared approves the share

19 retrieveSharedWithMe() returns a list of files shared with a user

20 addPublicShare() makes a file available publicly for download

13

21 removePublicShare() makes a file unavailable for downloading by

public users

22 retrievePublicShare() returns a list of file publicly shared by a user

23 retrieveMyShares() returns a list of file shared by a user

24 getUsernamesForSync() returns a list of users with whom a file should

be synced

25 getUsernames() retrieves all approved users

26 matchCredentials() matches the username and password of a

user

27 retrieveOnlineUsers() returns a list of users that are currently

online

28 checkIfUserExists() checks if a username is unique or not

29 getUsernameFromCookie() gets the username corresponding a unique

cookie

30 getFileIdFromPath() gets the unique file id of a file from its path

31 getPathAndFileFromFileId() returns id of a file from its path and name

32 getEmail() retrieves a user’s email address

33 initializeConnections() gets the connection to the database

34 closeConnection() closes the connection to the database

V. Email: This class sends 2 types of mails.

1. Confirmation/ rejection mail

2. Forgot password mail

14

Table 5 Email class

No Method Name Method Description

1 sendEmailToClient() sends client a confirmation email. It

composes mail using MimeMessage class and

sends mail through Transport class.

3.2 Client side classes

The client side program consists the following classes.

I. User: This class uses ConnectionHandler class to bring information from the server.

Table 6 User class

No Method Name Method Description

1 login() logs in the user

2 logout() logs out the user

3 viewFileHistory() gets the edit history of a particular file

4 viewOnlineUsers() returns a list of online user.

5 viewPublicDocuments() view public files that are available for

download

6 viewSharedFiles() view the files that a user has shared with

othersr

7 changePassword() does the necessary procedures to change

the password of a user

8 downloadPublicFiles() downloads a publicly available document

9 receiveFile() downloads a file for user

10 viewFileSharingRequests() shows the file sharing requests that others

have made to a user

11 approveFileSharingRequest() approve the file sharing request

12 cancelSharing() unshare a shared file

15

13 forgotPassword() creates a random password for a user and

emails him

14 shareFile() shares a file with a user

15 getUserList() provide suggestion to user for sharing

II. Admin: This class extends User.

Table 7 Admin class

No Method Name Method Description

1 receiveNotification() gets the list of users who are not approved

yet

2 approveAccount() verify a user and allow him to use syncer

3 removeUser() remove a user from the system

III. ClientProgram: This class manages the client side program.

Table 8 ClientProgram class

No Method Name Method Description

1 initializeEnvironment() initiates the InitialSync and ChangeDetector

class

2 retrieveCookie() retrieves cookie (if exists)

3 connectWithServer() connects with the server using

ConnectionHandler class

4 validateFieldsAndSend()

validates registration form fields and submits

the form if valid

5 createDirectory() creates Syncer, Shared and Public directories

16

IV. ChangeDetector: This class is responsible for detecting changes.

Table 9 ChangeDetector class

No Method Name Method Description

1 run() this class implements the Runnable interface

so that it can be run in a thread

2 detectChange() main method for detecting a change

3 onFileCreate() whenever a file/ folder is created, this

method is called to handle the event

4 onFileDelete() whenever a file/ folder is deleted, this

method is called to handle the event

5 onFileRename()

whenever a file/ folder is renamed, this

method is called to handle the event

6 addThread() adds a new thread to a directory that

requires listening to changes

7 startThread() starts an added thread

8 stopThread() stops a thread when a directory is deleted or

renamed or program is stopped

V. ChangeHandler: This class queues the detected changes and sends it to the server.

Table 10 ChangeHandler class

No Method Name Method Description

1 run() this class implements the Runnable interface

so that it can be run in a thread

2 addEvent() add a new event to the queue that was

detected

3 handleFolder() searches recursively for files in a directory

17

4 getModifiedPath() transforms the absolute path to the relative

path before sending to the server

5 notifyChange() send server the message about the change

detected

VI. InitialSync: Whenever the program is executed, this class performs the initial

synchronization.

Table 11 InitialSync class

No Method Name Method Description

1 synchronizeFiles() synchronize files with the server when the

client logs in

2 getModifiedPath() transforms the absolute path to the relative

path before sending to the server

3 getFiles() returns all file stored inside Syncer directory

Classes for Graphical User Interface

Our project has the following classes for graphical user interface:

1. AccountRequestPanel: Displays pending account requests to admin.

2. ChangePasswordPanel: Takes new password as input from user.

3. CustomizedPanelForAccountRequest: Used for organizing pending account requests.

4. CustomizedPanelForOnlineUser: Used for better presentation of online username.

5. CustomizedPanelForShare: User for organizing shared files to improve user experience.

6. CustomizedPanelForSharingRequest: User for organizing pending sharing requests.

7. CustomizedPanelForUserManagement: User for organizing existing username.

8. ForgotPasswordPanel: Takes username as input from user.

9. LoginPanel: Takes username and password as input from user.

10. MyFilesPanel: Displays files inside Syncer directory.

18

11. MySharingsPanel: Displays files shared by user (for both private sharing and public sharing).

12. OnlineUserPanel: Displays online users.

13. PublicSharePanel: Displays publicly available files.

14. RegistrationPanel: Takes name, username, password, email address as input.

15. SharedWithMePanel: Displays files shared with a user.

16. ShareRequestPanel: Displays pending sharing requests.

17. UserManagementPanel: Displays existing users to admin.

18. UserSelector: Used for providing suggestion to user at the time of sharing file.

3.3 Common classes

Apart from the above classes mentioned, there are classes that were needed in both the server

and client side. These classes are-

I. ConnectionHandler: This class is responsible for the transfer of messages and files between

the server and the client. It has the following methods.

Table 12 ConnectionHandler class (Client side)

No Method Name Method Description

1 sendMessage() sends a message to the connected

computer

2 sendReply() sends reply to the connected computer

3 receiveMessage() receives message from the connected

computer

4 sendFile() sends a file

5 receiveFileThroughServer() receives a file through server socket

6 receiveFileThroughClient() receives a file through client socket

7 receiveList() receives list sent by server

8 run() message receiving was needed to be run in a

thread. Thus this class had to implement the

runnable interface

19

9 isConnected() checks if the connection is open or not

10 receiveReply() when an event is triggered the computer

connected is sent a message. The sender then

waits for the receiver for a message on what

to do about thie event

11 deleteFiles() deletes file/folder

Table 13 ConnectionHandler class (Server side)

No Method Name Method Description

1 sendMessage() sends a message to the connected

computer

2 sendReply() sends reply to the connected computer

3 receiveMessage() receives message from the connected

computer

4 getFiles() retrieves all file of a client for initial syncing

5 sendFileThroughServer() sends a file through server socket

6 sendFileThroughClient() sends a file through client socket

7 receiveFile() receives a file

8 run() message receiving was needed to be run in a

thread. Thus this class had to implement the

runnable interface

9 isConnected() checks if the connection is open or not

11 deleteFiles() deletes file/folder

12 adminFileDelete() deletes file of a user removed by admin

II. Zipper: This class is responsible for compressing a file before sending and uncompressing the

file after receiving. It has the following methods.

20

Table 14 Zipper class

No Method Name Method Description

1 zipFile() zips a file, given it’s path

2 unzipFile() unzips the contents of a zipped file

III. Utils: Contains some miscellaneous methods needed throughout the program.

Table 15 Utils class

No Method Name Method Description

1 hashPassword() returns the MD5 hash of a text

2 randomString() returns a string of random characters; the

length of the string can be passed as a

parameter

21

Chapter 4: User Manual

1. At first navigate to the syncer-installer directory and run the installer script as sudo.

Figure 3 Syncer Installer

2. Run the jar and you will see a login panel.

Figure 4 Login Panel

22

3. If no user account has been created then register for one.

Figure 5 Registration Panel

4. When the registration is successful an email will be sent to your account. Now login using your

credentials.

5. You will see a Syncer directory created in your desktop as you login. Place files or folders in it

and they will be automatically uploaded.

23

Figure 6 Syncer Directory at Desktop

Figure 7 My Files Panel

6. You may share a file with another user. Click on “share” at the top and click on share file. Type

in the username with whom you want to share. Or if you want it to share it publicly the click on

“publicly share.” You can also see the history of a file.

24

Figure 8 Sharing Files

Figure 9 File History

25

7. You may cancel shares from the “view shared files” and “view public shares.”

Figure 10 My Shared Files

Figure 11 Publicly Shared Files

8. In case you want to change your password, go to menu and change password.

26

Figure 12 Change Password Panel

9. Logging out is not necessary. If not logged out, the program will automatically log in the next

time you start the computer.

10. If you have forgot your password, you can get new password. Simply type your username in

the input box and submit. You will receive new password through the email address you provided

during registration.

27

Figure 13 Forgot Password Panel

11. If you are an admin you can see which users have registered and are yet to be approved (from

the Manage Users menu). Clicking on approve will allow them to use Syncer If they are refused

their registration will not be complete and thus they cannot use Syncer. An automated email will

be sent to them when you approve or refuse.

Figure 14 Approving Account Panel

12. Admin also has the power of removing an existing user. If they are removed all their

information and files will be removed from the system.

28

Figure 15 Removing Existing Users Panel

That’s it! Now you are ready to go and use Syncer!

29

Chapter 5: Conclusion and Implementing Limitation

The difficulty of this project was beyond our imagination. It seemed impossible at times with the

given time constraint. Not only were problems occurring frequently but they were very difficult

as well.

However, despite these difficulties, we have successfully completed this project. We enjoyed

every moment of our work. We learned a lot about multi-threading, server client architectures,

locking mechanisms and operating systems. Our programming skill with Java also increased by a

fair margin. We are very happy with what we have completed considering the time limit of the

project. The difficulties we faced only gave us more insight about this topic. If we are to design

this sort of program again, we are sure to be better at our design and more confident than before.

We have plans to improve this project in the future. As this was a classroom project we had a

defined scope and we also had some assumptions. Hopefully, we will make Syncer more

complete by adding the features which we currently skipped. In the next version we have plans

for handling renames for shared files, increasing performance and security and improving the

graphical user interface.

References

[1] Techtarget, http://whatis.techtarget.com/definition/server, last accessed on 17.4.2017

[2] Computerhope, http://www.computerhope.com/jargon/c/client.htm, last accessed on

17.4.2017

[3] Searchnetworking, http://searchnetworking.techtarget.com/definition/port-number, last

accessed on 17.4.2017

[4] Lifewire, https://www.lifewire.com/what-is-an-ip-address-818393, last accessed on

17.4.2017

[5] Oracle, https://docs.oracle.com/javase/tutorial/networking/sockets/-definition.h-tml , last

accessed on 17.4.2017

[6] Businessdictionary, http://www.businessdictionary.com/definition/synchronization.html,

last accessed on 17.4.2017

[7] Wikipedia, https://en.wikipedia.org/wiki/File_hosting_service, last accessed on 17.4.2017

[8] Webopedia, http://www.webopedia.com/TERM/H/heisenbug.html, last accessed on

22.4.2017

http://whatis.techtarget.com/definition/server
http://searchnetworking.techtarget.com/definition/port-number
https://www.lifewire.com/what-is-an-ip-address-818393
https://docs.oracle.com/javase/tutorial/networking/sockets/-definition.h-tml
https://docs.oracle.com/javase/tutorial/networking/sockets/-definition.h-tml
http://www.businessdictionary.com/definition/synchronization.html
https://en.wikipedia.org/wiki/File_hosting_service
http://www.webopedia.com/TERM/H/heisenbug.html

