ShowMe: Show Me Related Work

Summary Report

Kishan Kumar Ganguly
Eusha Kadir
Aquib Azmain
Moumita Asad
Rafed Muhammad Yasir

January 15, 2018

Contents

1 INtrOdUCTION et 1
2 Requirement, ANALYSIScooiiiiiiiiiiiiii e 1
2.1 OVETVIEW iiiiiiiiiiitee ettt e e ettt e e e e e ettt e e e e e e e e 1
2.2 ASSUINPEIONE L.ttt 2
2.3 SCOPE e 2
2.4 Requirement SpecifiCation................uuueiiiiiiiiiiiiiiiiiiiiiii 2
2401, USE CASES .ttt 2
2.4.2. Activity DIagramsoooooueiiiiiiiiiiiiiiii e 6
2.4.3. Entity Relationship Diagramcccccooiis 8
244, Schema TableS.t 9

3 Architectural Designoooooiiiiiiiiiii 10
3.1 Choices and tradeoffs ... 11

4 Management PIANoooiiiiiiiiiiii e 11
4.1 Team MemDbDercoooiiiiiiiiie e 11
4.2 Team Coordinationooooiiiiiiiiiiiiiii 11

5 Source Code Managementccoooiiiiiiiiiiiiieiee e 12
6 Time Managementcooooiiiiiiiiiieeeeeeee e 12
T IMpPlementationcoooeeeeiiiiii e 12
8 USEr INOIACE ... 13
9 Verification and Validation Activitiesccccoiiiiiiiiiiiiiiie e 15
10 Challenges and Lessons Learned.................uuuuiiies 16
10.1 Challengesoooiiiiiii 16
10.2 Lessons Learned ... 16
11 CONCIUSION iiiiiiiiiiiiiiiiiiii 16

ii

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Use case level 0 - ShOWME ...t 3
Use case Level 1 - Modules of ShowMe...........ccociiiiii 3
Use case Level 1.1 - Authentication.............ccccccooi 4
Use case Lavel 1.2 - Graph Generation...........ccccccvvvviiiiiiiiiiiiiiiiiiiiiiiieeee 4
Use case Level 1.3 - Node Managementccoooeiiiiiiiiiiiiiniiiiiiiiinn. 5
Use case Level 1.4 - Edge Managementc.cccccccviiiiiii. 6
Activity diagram of Authentication moduleccccooiiiiiii. 6
Activity diagram of Graph Generation modulecccoooeeiiiiiiiiiiiiinnnn... 7
Activity diagram of Node Management modulec.cccoeiiiiiiiiiinnnnne. 7

Activity diagram of Edge Management module.............ccccoooviiiiiiiiiiinnnn. 8
Entity Relationship Diagram of ShowMe....................col, 8
3-tier Architecture of ShowWMeooooiiiiiiiiiiiii 10
Architectural design of ShowMe..........cccoooii 10
Time distribution of SHOWMe..........ooiiiiiiiiiiie e 12
Screenshot of Log N PAGE.......vviiiiiiiiiiii e 13
Screenshot of Search Paper page..........coooeiiiiiii 14
Screenshot of Search Result page.........coooeiii 14
Screenshot of Graph Page.........oooovviiiiiiiiiiiiii 15

iii

1 Introduction

SCORE 2018 is a worldwide competition organized by the 40th International Conference
on Software Engineering (ICSE) for promoting Software Engineering practice. Student
teams are required to design and implement one among the several projects given, prov-
ing their skills in software engineering.

Our team consists of a masters student and four undergrad students from the Insti-
tute of Information Technology, University of Dhaka. The task of the masters student
was to administer the students during the development process.

We have selected “ShowMe: Show me related work”, which is a project for finding
related research papers. We chose it as our project because we saw in it the possibilities
immediately. At our institute we have a group of students and teachers very much
dedicated to research work. We have seen their efforts in doing literature reviews by
reading many research papers at a time. We thought that doing this project would help
them to some extent, making the task of exploring papers a little easier.

It contains requirement analysis, architectural design, tradeoffs and choices, manage-
ment plan, source code management, time management, implementation and platform

choices, testing methods, challenges faced and lessons learned.
2 Requirement Analysis

2.1 Overview

ShowMe is a web application that will help the research community to find related work
and understand relationship among them.

Whenever a user searches a paper, a list of relevant papers will be shown by taking
data from Google Scholar. A user may also make an advanced search by specifying the
following criteria:

e Articles with all of the words

o Articles with the exact phrase

e Articles with at least one of the words

o Articles without the words

e Words occur in the title/anywhere in the article
e Articles authored by

e Articles published in

e Articles dated between

When an item on the list is clicked, a citation graph of the paper will be shown. Each
node in the graph will represent a scholarly information. If an article cites another article,

a directed edge to the cited article will be shown. Hovering mouse on a node will show
following information of the article:

o title

e author
e journal
® Dpages

e year

Clicking on a node, the pdf of the publication will be shown. If the pdf is not

available the user will be taken to the site where the paper was found.
Clicking on an edge, user can view text snippets of how one paper cites another. Edges
will be color coded according to relationship among papers. A user can rate an edge to
mark the relatedness between two papers. A user can rate an edge out of 5 according to
strong or weak relationship among the papers. Only a logged in user can rate an edge.
A user may sign up using an email address or Google account.

The generated graph can be filtered by searching. A search key can be applied on
the title, author, year and journal. The user can select if the filter applied will remove
nodes from the graph or apply a different color. Users can view recently made search
queries also.

2.2 Assumption

e Metadata of papers will be available (title, author, journal, pages, year of the
article).
e Number of requests to be made to Google Scholar will not exceed the request

limit of Google Scholar.

2.3 Scope

o We will use information from the search results provided by Google Scholar.
o Reference lists will be extracted from PDFs. However, not all PDFs are avail-

able as some are paid. We will extract from PDFs that are shown on Google
Scholar.

2.4 Requirement Specification

2.4.1. Use cases

The following use cases show the list of events that take place between the users and
the system to accomplish the goal.

Level 0: ShowMe

Primary actors: Unauthenticated user, Authenticated user.

Goal in context: The diagram represents the whole ShowMe application.

Authenticated User Unauthenticated User

Figure 1: Use case level 0 - ShowMe

Level 1: Modules of ShowMe
Primary actors: Unauthenticated user, Authenticated user.
Goal in context: The diagram shows all the modules of the ShowMe.

Authentication

Graph Generation \
= L

\

Authenticate Node Management nauthenticated
User User

Edge Management

[I

Figure 2: Use case Level 1 - Modules of ShowMe

There are four modules in ShowMe application.
Level 1.1: Authentication

Level 1.2: Graph Generation

Level 1.3: Node Management

Level 1.4: Edge Management

Level 1.1: Authentication
Primary actors: Unauthenticated user, Authenticated user.

Goal in context: The diagram refers to the details of the Authentication module of level
1.

=X

Unauthenticated User

Email Verification

i / Authentication

Authenticated User Password Reset

Figure 3: Use case Level 1.1 - Authentication

Actions and Replies

A1l: Unauthenticated user enters email address and password to register.

R1: System checks whether any personal account exists under the same email or not. If
the request is valid, the applicant will receive a confirmation email.

A2: Authenticated user enters email address and password or use google account to
authenticate.

R2: He/she is allowed to enter into the system upon entering correct credentials.

A3: Authenticated user wants to reset password.

R3: System allows to reset the password through email.

Level 1.2: Graph Generation

Primary actors: Unauthenticated user, Authenticated user.

Goal in context: The diagram refers to the details of the Graph Generation module of
level 1.

Advanced Search

Graph Viewing

Search History

Figure 4: Use case Lavel 1.2 - Graph Generation

Actions and Replies

Al: Unauthenticated user or Authenticated user searches for papers with or without
advanced search.

R1: System provides result by taking data from Google Scholar. This result shows a list
of related papers.

A2: Unauthenticated user or Authenticated user clicks on a paper from the list.

R2: System generates citation graph of the paper.

A3: Unauthenticated user or Authenticated user wants to view recently searched papers.
R3: System provides the list of recently searched papers.

Level 1.3: Node Management
Primary actors: Unauthenticated user, Authenticated user.
Goal in context: The diagram refers to the details of the node management module of

level 1.
Node Information
Publication Viewing \
Paper Download ’ .
Authenticated nauthenticated
User User
Node Filtering

Figure 5: Use case Level 1.3 - Node Management

Actions and Replies

A1: User hovers mouse on a node.

R1: information about a pdf (title, author, journal, pages, year) will be shown.

A2: User clicks on a node.

R2: The pdf of the publication will be shown. If the pdf is unavailable, the user will be
taken to the site where the paper was found.

A3: User clicks on downloading paper.

R3: Paper will be downloaded.

A4: User wants to filter graph.

R4: Graph is filtered upon selected criteria.

Level 1.4: Edge Management
Primary actors: Unauthenticated user, Authenticated user.

Goal in context: The diagram refers to the details of the Edge Management module of

/ Citation Snippets \
Authenticatedu> Edge Rating Unauthenticated User

Figure 6: Use case Level 1.4 - Edge Management

level 1.

Actions and Replies

A1l: Unauthenticated user or Authenticated user wants to view text snippets of citations.
R1: System shows citation snippets.

A2: Authenticated users rate edges.

R2: System stores rating.

2.4.2. Activity Diagrams

Activity diagram represents the complete flow of a particular use case.

Figure 7 represents the activity diagram of level 1.1 Authentication module.

Send Email To

Figure 7: Activity diagram of Authentication module

Figure 8 represents the activity diagram of level 1.2: Graph Generation module.

Figure 8: Activity diagram of Graph Generation module

Figure 9 represents the activity diagram of level 1.3: Node Management module.

Show the site of
h 4
S
» -

Figure 9: Activity diagram of Node Management module

Figure 10 represents the activity diagram of level 1.4: Edge Management module.

Y

= =

Y
Y No
Yes

Figure 10: Activity diagram of Edge Management module

2.4.3. Entity Relationship Diagram

Figure 11 shows Entity Relationship diagram of showme project. For simplicity only
primary keys are shown in the ER diagram.

&)
(=) e
| <>

&)

Figure 11: Entity Relationship Diagram of ShowMe

2.4.4. Schema Tables

We have derived the following tables from the ER diagram (Figure :11)

User
Attribute Type Size
email varchar 50
password varchar 50
oauth provider varchar 20
oauth uid varchar 50
fname varchar 30
Iname varchar 30
created datetime

Node
Attribute Type Size
1D varchar 30
Title varchar 120
journal varchar 100
volume varchar 10
pages varchar 10
year year
pdfLink varchar 100

Author
Attribute Type Size
name varchar 50
Node 1D varchar 30

lm
(o
09
@

Attribute Type Size
1D varchar 30
SourceNode ID varchar 30
TargetNode ID varchar 30
Citation Snippet
Attribute Type Size
1D varchar 30
Edge 1D varchar 50
text varchar 300

Rating

Attribute Type Size
Email ID varchar 30
Edge 1D varchar 30
value tinyint

3 Architectural Design

Our application is based on the classic 3-tier architecture. The software is divided into
a presentation layer, logic layer and a persistence layer. [1, 2]

Presantation layer ‘ I Logic layer Persistence layer

Figure 12: 3-tier Architecture of ShowMe

The presentation layer is where all the user interactions take place. The presentation
layer communicates with the logic layer. Our logic layer is a REST API that provides
URL endpoints for the presentation layer to communicate. Through the logic layer user
inputs are processed and information are returned to the client. The logic layer com-
municates with the persistence layer to store and retrieve data from the system.

Presentation layer Logic layer Persistence layer

i Backend :
1 1
Single Page ' /’7 DB I
| Application (SPA) : :
\ e 1
[2 = 1
1 I_-'z N y 1

: | WebAPI | : Freecite library
1
1
1
1
1

3 ﬁﬁ\,/‘“xm

Browser

Figure 13: Architectural design of ShowMe

When the client requests the server for the application a single page application will
be loaded. Later on all requests to the server will be AJAX calls. The server will reply
in JSON. The server stores and retrieves data from the database server. We will also
need some external data provided as a service by the freecite.library API and the Google

10

API. The freecite library provides with parsed data of a citation and the Google API
helps logging in with a Google account.

3.1 Choices and tradeoffs

Initially we thought of scraping google scholar for a paper’s metadata and citation data.
But using this approach would mean we had to make huge number of requests to google
scholar. As google scholar disallows bots we would eventually end up being blocked. To
minimize the number of requests sent to Google Scholar we changed our data extraction
approach by using both Google Scholar and parsing PDF's. Search results are made using
Google Scholar and citation graph is made parsing PDF's.

4 Management Plan

4.1 Team Member

Serial Member Name Email Address Area of Expertise
No
1 Kishan Kmar | bsse0505@iit.du.ac.bd | Scrum | Software Architecture,
Gaguly Master | machine learning and self-

adaptive systems

2 Eusha Kadir bsse0708@iit.du.ac.bd | Devel- | Machine Learning and Ar-
oper tificial Intelligence

3 Aquib Azmain | bsse0718@iit.du.ac.bd | De- Designing and Front-end
signer | Development

4 Moumita Asad | bsse0731@iit.du.ac.bd | Devel- | Software Requirement

oper Analysis
5 Rafed Muham- | bsse0733@iit.du.ac.bd | Devel- | Web Development and
mad Yasir oper Networking

4.2 Team Coordination

For team management, we followed Scrum. For agile software development, Scrum is a
popular methodology. It is chosen because it is lightweight and simple to understand.

The roles are chosen according to the knowledge of the members. Our Scrum Master
is Kishan Kumar Ganguly. In our development team, there are four members: Rafed
Muhammad Yasir, Moumita Asad, Eusha Kadir and Aquib Azmain.

For working together on a document we used Google Docs [3]. This is a collaborative
platform to share and edit our document among team members. Our diagrams are made
with draw.io [4]. In draw.io diagrams can be made collaboratively.

11

We have used Trello [5] project management application to assign tasks to member.
In every scrum meeting, progress of the tasks were discussed. When tasks were com-
pleted, they were marked as complete and new tasks were assigned.

5 Source Code Management

To work collaboratively we used Git to manage our project. Our project is hosted at
Github [6]. We worked in a distributed manner and each of us pushed our code to the
remote to keep everyone updated. Git also helped managing versions and different
branches of our project.

6 Time Management

The time distribution of our project is shown in Figure 14.

Start Duration (days)

01-06-17 11-07-17 20-08-17 29-09-17 08-11-17 18-12-17 27-01-18

Reguirement analysis
Architectural designing

Technology selection

Backend development

Ul development

Testing
| | |
Teti ul Backend | Technology |Architectural|Requirement
estin
g development |development| selection designing analysis
Start 01-10-17 03-12-17 01-10-17 02-09-17 01-09-17 10-06-17
Duration (days) 101 38 90 28 29 82

Figure 14: Time distribution of ShowMe

7 Implementation

The whole implementation has three parts- the database for storing data, the web api
for data communication and the UI for presentation.

For the database we used MySQL RDBMS (Relational Database Management
System). MySQL was chosen for its simplicity and ease of use. It is easy to install, use,
as well as scalable and manageable. Apart from our own database we have used the

12

freecite API which is a free citation parser that parses document citations into fielded
data. For parsing, it uses the conditional random fields model.

For serving the client we made a web API that receives client requests and serves
JSON data (search results, citation data). This web API is written in Python. The
reason we chose Python is that during the initial phase of our project we had to try out
many prototypes before actually selecting one for the project. Python is very suitable
for designing prototypes as a working implementation can be produced in minimal code.
Not only is it concise it's also easy for others to read.

We also used the Flask [7] framework for making the web API. Flask is a web micro-
framework for Python. We considered Django but realized it would be too heavy for our
project. Flask is a lot more lightweight framework and is easier to use.

Our front end is built using Angular 4 [8]. Angular is a framework for making single
page applications. It also allows the testing of front end components. For building the
citation graph we used cytoscape.js [9] library. There were quite a handful of graph
libraries to choose from but this library showed very good backward compatibility with
older browsers and hence it was preferred.

8 User Interface

& showMe x \(+ =@ = |
€)) localhost/showme @ || Q search wB ¥$ & & 0O g =

[8) Most Visited @ Getting Started

Login to ShowMe

Entel mail address and Password to log in:

or

G+ Sign in with Google

Figure 15: Screenshot of Log in page

13

Showhe x U+
J

€) (| localhost/showmesearchAuth.php

[B) Most Visited @ Getting Started

Welcome abc@gmail.com

Show me related work

Showle is a web application that will help the research community to find related work and understand relationship ameng them. Finding related

work and understanding the relation among papers is a non-trivial task. Many services offer help, e.g., GoogleScholar, but they lack many

(dynamic) features. Ideally, we are be able fo visualize relations among papers as graphs; each node is a paper and there is a directed edge

between two nodes if one paper cites another. A click on a node in the graph will show the pdf (if available), and a click on an edge in the graph

should show the way one paper cites another. Furthermore, the graph can be enhanced by users; the users can mark an edge as strong (i.e

paper is closely related) or weak

Search paper here

condensed cube| | - n

Figure 16: Screenshot of Search Paper page

m

ShowMe x o7

localhost/showme/searchResult.php @ || Q Search

/[Most Visited| @ Getting Started

Enter paper title

Search Result Graph
Title Description

Condensed cube: An effective Abstract: Pre-computed data cube facilitates OLAP (on-line analytical processing)

approach to reducing data cube It is well-known that data cube computation is an expensive operation. While most

size algorithms have been devoted to optimizing memory management and reducing
computation costs, less

PrefixCube: prefix-sharing Abstract BST Condensed Cube is a fully computed cube that condenses those

condensed data cube tuples, which are aggregated from the same single base relation tuple, into one
physical tuple. Although it has been proved to be an effective approach to reduce
the size of a data cube, there still

Quotient cube: How to .. goal is constructing an exact and concise summary of a cube that preserves the
summarize the semantics of a cube semantics and lat- tice structure, as opposed to j ust compressin g the cube
data cube siz e, w hich distin g uishes it from all these w ork s . The recentworkon "

condensed cube "byWangetal .
Minimal Condensed Cube: data Abstract: The condensed cube has been proposed to reduce the huge size of data

organization, fast computation, cubes in OLAP system. The intuition of condensed cube is to compress
and incremental update semantically redundant tuples into their representative Base Single Tuples (BSTs)

Figure 17: Screenshot of Search Result page

14

Year

2002

2004

2002

2008

Graph

Generate

Generate

Generate

Generate

m

Showhe x

(-i i) | localhost/showme/graph.php ¢ || Q search wae & A & &

[8) Most Visited @ Getting Started

ShowMe History Log Out

Filter Graph

Data cube: A relational aggregation '
operator generalizing group-by,

cross-tab, and sub-total

Figure 18: Screenshot of Graph page

9 Verification and Validation Activities

Verification checks whether we are building the product right where validation checks
whether we are building the right product. We first developed a verification and valida-
tion plan which consisted of standards, schedules, resource summary, techniques and
methods etc. As part of the verification, we conducted reviews and manual inspection
on each of the work products. The requirement, design documents, codes and test cases
were thoroughly reviewed. In the documents, we checked for inconsistencies, logical er-
rors, tractability, understandability, completeness and the level of detail. For code re-
views, we performed informal walkthroughs. To perform code reviews, apart from man-
ual inspection, we also took assistance from a static analysis tool called Pylint.

We further performed three levels of validation such as unit, integration and system
testing. We wrote unit test case plans where we mentioned the test case id, method/
function, input, expected output and priority of the test case. We generated most of the
test cases by generating control flow graphs from the source code and considering inputs
that lead to traversing a valid independent path. Some of the unit test cases are gener-
ated by manually inspecting the code. For unit testing, we used unittest for python and
for AngularJS. We integrated Travis CI to our project repository at Github and as a
result test cases are run at each integration to our codebase. This ensures that each new
piece of code added does not break the codebase. Thus healthier software is developed.
We further performed black box testing where we mostly considered boundary value
analysis and equivalence class testing techniques. We also planned for load testing which
we will perform using Apache JMeter. We are also preparing acceptance test cases
according to the requirements which we will use to test whether the product fits the
user. We have also primarily collected feedback on the Unser Interface (UI) from the

15

researchers of the Institute of Information Technology, University of Dhaka and working
to furnish the UL

10 Challenges and Lessons Learned

10.1 Challenges

The project was full of challenges. Some of those challenges are:

10.2

Google Scholar disallows bots. As a result, limited queries has to be made to
avoid blocking. So extracting data from Google Scholar was challenging.
Because of the rate limit of google scholar, designing was also very challenging.
We had to try out many different ways before actually selecting one that would
be suitable for our project (see Choices and tradeoffs for details).

Extracting reference list from pdf was also challenging as there is no fixed for-
mat of referencing.

Extracting individual reference was also difficult as we could not locate the
starting and ending point of a reference with high accuracy. We had to design

an algorithm for proper detection.

Lessons Learned

We were inexperienced regarding research papers as most of us have not done
any research work yet. Through this project we came to know a lot about
research paper which will help us in future.

Working with pdfs was a new experience for us.

We have performed software testing before but integrating with Travis CI was
something we had not done before.

We have performed project management using Trello and using Trello was
completely new for us.

This was our first big project in python. Through this project we have learnt
much about python itself and the huge number of libraries it offers including

the testing frameworks.

11 Conclusion

We are very happy working with this project and it was a new learning experience for

us. We have tried to put the best software engineering practices into play and imple-

mented as many features as we could. Before we started writing the code we thoroughly

16

went through the design phases. Our design phases is reflected in the requirements en-
gineering and architecture design. There is still much room for expansion of this project.
e At present we are generating citation graph by extracting reference list from
pdfs only. Our coverage can be expanded by supporting extracting reference
list from websites like IEEE, Research Gate, SpringerLink and others.
e Currently we are showing relationship between two papers based on user rating
and measuring textual similarity. Following relationships can be developed also:
o A particular university cites which university the most.
o Which authors work more together.

e PDF can be added to drive if google authentication is used.

We would like to thank Professor Milos Gligoric who helped us time to time by reply-
ing to our queries regarding this project. We would also like to thank Professor Christine
Julien who guided us during the time of registration.

References

[1] »Defenition of 3-tier-application,« [Online]. Available:
searchsoftwarequality.techtarget.com/definition/3-tier-application. [Last accessed
on 5 January 2018].

[2] »Benefits of 3-tier architecture,« [Online|. Available: www.izenda.com/blog/5-
benefits-3-tier-architecture. [Last accessed on 10 January 2018].

[3] »Google docs,« [Online]. Available: docs.google.com.

[4] »Draw.io,« [Online]. Available: github.com/jgraph/drawio.
[5] »Trello,« [Online]. Available: www.trello.com.

[6] »Github,« [Online]. Available: www.github.com.

[7] »Flask,« [Online]. Available: flask.pocoo.org.

[8] »Angular 4,« [Online]. Available: angular.io.

[9] »Cytoscape,« [Online]. Available: js.cytoscape.org.

17

