

ScanF: Web Application Security Assessment by

Fault Injection and Behavior Monitoring

Software Project lab-3

NOVEMBER 25, 2018

INSTITUTE OF INFORMATION TECHNOLOGY

University of Dhaka

i

ScanF: Web Application Security Assessment by Fault Injection and

Behavior Monitoring

Supervised by

B M Mainul Hossain

Associate Professor

Institute of Information Technology

University of Dhaka

Submitted by

Rafed Muhammad Yasir

(BSSE 0733)

BSSE Session: 2014-2015

Institute of Information Technology

University of Dhaka

Institute of Information Technology

University of Dhaka

25-11-2018

ii

Abstract

This document is a technical report of the system to be built- ScanF: web application security

assessment by fault Injection and behavior monitoring. The tool aims to detect SQL vulnerabilities

and cross site scripting vulnerabilities using fault injection methods. This document contains the

software requirement specifications, design specifications, implementation details, testing

procedures that were followed to build the system. Reading this document and following the

user manual will provide the reader a general idea of the structure of the system and how to use

it.

iii

Letter of Transmittal

November 25, 2018

BSSE 4th Year Exam Committee

Institute of Information Technology

University of Dhaka

Dear Sir,

I have prepared the report on “ScanF: A web application security assessment tool by fault

injection and behavior monitoring”. This report includes the details of each steps I followed from

gathering requirements to implementing the tool.

The primary purpose of this report is to summarize my working procedure for building the tool

so that anyone reading this document can understand how ScanF works and use it as well to its

full potential for scanning vulnerabilities in websites. I have tried my level best to implement the

tool in the best way possible.

Sincerely yours,

Rafed Muhammad Yasir

BSSE 0733

iv

Document Authentication

This project document has been approved by the following persons.

-------------------------------- -------------------------------

Prepared by Approved by

Rafed Muhammad Yasir B M Mainul Hossain

BSSE-0733 Associate Professor

Institute of Information Technology

University of Dhaka

v

Letter of Endorsement

This letter is to certify that, Rafed Muhammad Yasir, BSSE0733, student of Institute of

Information Technology, University of Dhaka, has done “ScanF: A web application security

assessment tool by fault injection and behavior monitoring”. I have gone through the report. All

the information mentioned in this document is true. I wish him every success in life and hope

that he will continue his effort.

SPL Supervisor

Dr. B M Mainul Hossain

Associate Professor

Institute of Information Technology

University of Dhaka

vi

Table of Contents

1. Introduction ... 1

2. Quality Function Deployment (QFD) ... 2

3. Usage Scenario ... 3

Crawling .. 3

SQL Injection ... 3

JS Injection .. 3

Test result management ... 3

4. Scenario Based Modeling ... 4

4.1. Use case diagrams .. 4

4.2. Activity Diagrams .. 9

5. Data Modeling.. 23

Schema tables ... 24

6. Class Based Model ... 27

6.1. Class Identification.. 27

6.2. Class Cards .. 28

7. Architectural Design ... 31

7.1. System in context ... 31

7.2. High level component level design ... 32

8. Interface design ... 33

9. Implementation ... 34

9.1. Front end implementation ... 34

9.2. Back end implementation .. 35

10. Testing .. 39

vii

10.1. Approach to Testing .. 39

10.2. Test tools ... 39

10.3. Test items .. 39

10.4. Test cases .. 40

11. User Manual ... 43

11.1. System requirements .. 43

11.2. Install program dependencies .. 43

11.3. Using the tool .. 44

11.4. Troubleshooting guide .. 50

12. Conclusion .. 51

References .. 52

viii

List of Figures
Figure 1: Level 0 use case – ScanF .. 4

Figure 2: Level 1 use case -modules of ScanF ... 5

Figure 3: Level 1.1 use case – Crawler ... 6

Figure 4: Level 1.2 use case - SQLi detector ... 7

Figure 5: Level 1.3 use case - XSS detector .. 8

Figure 6: Level 1.4 use case - Test result management .. 9

Figure 7: Activity diagram of crawling (from use case 1.1) .. 10

Figure 8: Activity diagram of page crawling (from use case 1.1.1) ... 11

Figure 9: Activity diagram of form discovery (from user case 1.1.2) ... 12

Figure 10: Activity diagram of SQLi detection (from use case 1.2) .. 13

Figure 11: Activity diagram of automated injection (from use case 1.2.1) 14

Figure 12: Activity diagram of manual injection (from use case 1.2.2) .. 15

Figure 13: Activity diagram of automated form fill up (from use case 1.2.3) 16

Figure 14: Activity diagram of behavior analyzer (from use case 1.2.4) 17

Figure 15: Activity diagram of XSS detection (from use case 1.3) .. 18

Figure 16: Activity diagram of automated injection (from use case 1.3.1) 19

Figure 17: Activity diagram of automated form fill up (from use case 1.3.2) 20

Figure 18: Activity diagram of behavior analyzer (from use case 1.3.3) 21

Figure 19: Activity diagram of test result management (from use case 1.4) 22

Figure 20: Relationship among data objects .. 23

Figure 21: ER diagram ... 24

Figure 22: Class diagram ... 30

Figure 23: Architectural context diagram ... 31

Figure 24: High level component level design .. 32

Figure 25: Interface design ... 33

Figure 26: Front end structure .. 35

Figure 27: Backend structure .. 36

1

1. Introduction

Web applications nowadays are very matured and powerful. However, many web applications

go through rapid development phases with very tight deadlines, making it difficult to eliminate

all vulnerabilities.

The aim of this project is to develop a tool that will assess web application security based on fault

injection techniques. A user will provide the tool with an application URL. The tool will

automatically crawl the application and search for input fields where faults can be injected.

Assessing the nature of the input field, faults will be injected in the system. After a fault has been

injected, the tool will assess the behavior of the system. Any abnormal behavior will conclude

that a successful injection has occurred and the system is vulnerable. The user will be able to

observe and monitor how the tool is assessing the application through a user friendly interface.

The user can also tweak strategies for different injection methods for better vulnerability

discovery.

This document contains the software requirement specifications and design specifications of the

tool to be built which will give the readers an idea of the entire system.

2

2. Quality Function Deployment (QFD)

Quality function deployment is a quality management technique that translates the needs of the

customer into technical requirements for software. The following requirements for ScanF have

been identified.

Normal requirements:

 The tool can identify forms and through which data is submitted

 The tool can run automated sql injections on identified form fields

 The tool can run automated JS injections for reflected XSS discovery

Expected requirements:

 The tool can crawl a website and list its pages

 Users can choose the type of payloads to be used for attacks

 Results of previously performed attacks will be stored and can be viewed

 Users can manually craft sql injection payloads for better inspection

 For better understanding of injection results, screenshots will be taken after an injection

is performed

3

3. Usage Scenario

Crawling

To use the tool, a user will have to provide URL of an application he wants to test. The tool will

start crawling for other pages present in the application. For better spidering of the application,

the user can provide a session cookie returned by an application after authentication. After

crawling of a page, the tool will search for data entry points where user can submit data. After a

crawling session ends, the user will have a list of data entry points where faults can be injected.

Crawling can be stopped midway and restarted again if needed.

SQL Injection

There will be two methods of SQL injection- automated and manual. In automated injections, the

tool will test a form by injecting only one field at a time. A user will have several options to choose

from on what SQL faults can be injected. The other fields in the form will be filled smartly and

according to the constraints of each fields. The smart filling of other fields will increase the

chances of a successful injection. All possible combinations of the attack will be carried out. Upon

submitting each form, the response will be checked for signs of a successful injection.

In manual testing, the user can provide his own inputs that he finds suitable for testing. In this

case, unlike automated testing, only one attack will be carried out at a time.

JS Injection

JavaScript injection will be performed to detect reflected cross site scripting (XSS). The tool will

look at the parameters of a typical web application request and observe the response to see if

any of the parameters are present (as a reflection). If reflected, the tool verifies that the reflection

is not a coincidence.

Test result management

The result of each test will form a list which will be displayed to the user. Upon clicking a list, the

details of the test performed will be shown. Along with textual test results, screenshot of the

resultant page will be shown. Test items from the list can be deleted by a user.

4

4. Scenario Based Modeling

Although the success of a computer-based system or product is measured in many ways, user

satisfaction resides at the top of the list. If we understand how end users (and other actors) want

to interact with a system, a developer can characterize requirements and build meaningful

analysis and design models. Hence, requirements modeling with begins with the creation of

scenarios in the form of use cases and activity diagrams.

4.1. Use case diagrams

Use case diagrams of ScanF are given below. The system has only one actor (User). Thus, mention

of actors in diagram description is omitted.

Level 0: ScanF

Goal in context: The diagram represents the whole ScanF System.

Figure 1: Level 0 use case – ScanF

Level 1: Modules of ScanF

Goal in context: The diagram shows all the modules of ScanF

5

Figure 2: Level 1 use case -modules of ScanF

6

Level 1.1: Crawler

Goal in context: The diagram refers to the details of Crawler module of level 1.

Actions and Replies:

A1: User provides URL as input

R1: System crawls the site and finds forms

A2: User pauses/resumes crawling

R2: Crawler pauses/resumes

Figure 3: Level 1.1 use case – Crawler

7

Level 1.2: SQLi detector

Goal in context: The diagram refers to the details of SQLi detector module of level 1.

Actions and Replies:

A1: User initiates testing

R1: System injects forms and analyzes behavior

A2: User manually performs attack

R2: System carries out manual injection

Figure 4: Level 1.2 use case - SQLi detector

8

Level 1.3: XSS detector

Goal in context: The diagram refers to the details of XSS detector module of level 1.

Actions and Replies:

A1: User initiates testing

R1: System injects forms and analyzes behavior

Figure 5: Level 1.3 use case - XSS detector

9

Level 1.4: Test result management

Goal in context: The diagram refers to the details of test result management module of level 1.

Action and Replies:

A1: User selects attack list

R1: List of attacks and their results are showed

A2: An attack is performed

R2: System takes screenshot of the response

Figure 6: Level 1.4 use case - Test result management

4.2. Activity Diagrams

Activity diagrams are graphical representations of workflows of stepwise activities and actions.

Activity diagram describes parallel and conditional activities, use cases and system functions at a

detailed level [4].

Activity Diagrams of ScanF are given below.

10

Figure 7: Activity diagram of crawling (from use case 1.1)

11

Figure 8: Activity diagram of page crawling (from use case 1.1.1)

12

Figure 9: Activity diagram of form discovery (from user case 1.1.2)

13

Figure 10: Activity diagram of SQLi detection (from use case 1.2)

14

Figure 11: Activity diagram of automated injection (from use case 1.2.1)

15

Figure 12: Activity diagram of manual injection (from use case 1.2.2)

16

Figure 13: Activity diagram of automated form fill up (from use case 1.2.3)

17

Figure 14: Activity diagram of behavior analyzer (from use case 1.2.4)

18

Figure 15: Activity diagram of XSS detection (from use case 1.3)

19

Figure 16: Activity diagram of automated injection (from use case 1.3.1)

20

Figure 17: Activity diagram of automated form fill up (from use case 1.3.2)

21

Figure 18: Activity diagram of behavior analyzer (from use case 1.3.3)

22

Figure 19: Activity diagram of test result management (from use case 1.4)

23

5. Data Modeling

Data modeling provides a description of how data are represented and accessed [4]. Data

modeling includes:

 Identifying all data objects (a data object is a representation of composite information

(something that has a number of different attributes) that must be understood by

software) that are processed within the system.

 Identifying the relationships between the data objects and other information that is

pertinent to the relationships.

After thorough analysis of the system the following data objects and their relationships were

identified.

Figure 20: Relationship among data objects

24

Considering the above relations the following entity relationship (ER) diagram has been

constructed.

Figure 21: ER diagram

Schema tables

Website

Attributes Type Size

id int

baseurl varchar 1000

title varchar 200

Cookie

Attributes Type Size

id int

website_id int

25

name varchar 1000

value varchar 1000

Page

Attributes Type Size

Id int

website_id Int

url varchar 2000

screenshot_path varchar 50

Form

Attributes Type Size

id int

page_id Int

method varchar 10

form_action varchar 1000

Field

Attributes Type Size

id int

form_id int

type varchar 20

name varchar 100

default_value varchar 200

26

Constraint

Attributes Type Size

id int

field_id int

type varchar 50

value varchar 50

Test

Attributes Type Size

id int

form_id int

type varchar 10

input_json varchar 2000

html_output_path varchar 50

screenshot_path varchar 50

time_of_test datetime

duration int

result varchar 100

27

6. Class Based Model

Class-based modeling represents the objects that the system will manipulate, the operations that

will be applied to the objects to effect the manipulation, relationships between the objects, and

the collaborations that occur between the classes that are defined [4].

6.1. Class Identification

After potential analysis of the system the following classes were identified.

1. BaseModel

2. Website

3. Cookie

4. Page

5. Form

6. Field

7. Constraint

8. Test

9. Crawler

10. FormParser

11. Screenshot

12. SQLi

13. JSi

In the above, classes 1-6 have been derived from the data model. The system will be built in a

MVC architecture. Thus, the database tables have been mimicked to class models as well for

database access and operations. The rest of the classes have been identified through thorough

analysis.

28

The attributes and methods of the classes are given below:

Class Attributes Methods

BaseModel save_to_db(), update(), delete(),

as_dict()

Website id, baseurl, title

Page id, website_id, screenshot_path

Form id, page_id, method, form_action

Field id, form_id, type, name,

default_value

Constraint id, field_id, type, value

Test id, type, form_id, input_json,

html_output_path, image_path,

time_of_test, duration, result

Crawler url, home_url, scanned_urls,

not_scanned_urls, running

setup(), crawl(), get_forms()

FormParser form, baseurl parse()

Screenshot snap()

SQLi form, payload attack(), analyze()

JSi form, payload attack(), analyze()

6.2. Class Cards

Crawler

Responsibility Collaborator

Finding new URLs Website, Page

Finding forms Form

29

SQLi

Responsibility Collaborator

Preparing form AutoFormFill, Form

Injecting fault to target FileManager, Test, Screenshot

JSi

Responsibility Collaborator

Preparing form AutoFormFill, Form

Injecting fault to target FileManager, Test, Screenshot

AutoFormFill

Responsibility Collaborator

Automatically fill form Form, Field, Constraint

BaseModel, Classes Website, Page, Form, Field, Constraint and Test- their only responsibility is

to store data. They themselves don’t collaborate with others, but other classes collaborate with

them.

30

Figure 22: Class diagram

31

7. Architectural Design

The software architecture of a program or computing system is the structure or structures of the

system which comprise-

 The software components

 The externally visible properties of those components

 The relationships among the components [4]

7.1. System in context

The following diagram represents the system in context.

Figure 23: Architectural context diagram

The ScanF system is dependent on headless Chrome. The headless Chrome will be used for

testing purposes.

It may be asked why Google chrome has been chosen for testing when these tests can be run in

other ways through scripts. The reason is, our system would like a screenshot of the system with

the JavaScript scripts executed. Moreover taking screenshots with a browser rather than

manually setting up HTML and CSS is easier. Also the ScanF tool is interested in a total browser

behavior, so, using a browser helps.

32

7.2. High level component level design

Figure 24: High level component level design

The entire system will have some backend components and some front end components. The

backend be built around an MVC architecture. The model and view classes have been already

identified in the previous sections. The controller classes have only one responsibility- to receive

requests from the UI and forward them to another class for performing an operation. The front

end will have some HTML, CSS and ViewModel components. The ViewModels will be made with

the Vue framework.

33

8. Interface design

The UI of the ScanF tool is expected to be simple but very powerful. The UI will be a single page

application. In fact, there will be only one page from where the user can observe and monitor

everything. Contents of inner divs will change dynamically according to user actions.

The wireframe of the expected UI is something like this.

Figure 25: Interface design

To run the program, a user will run a script which will open a local HTTP server. Visiting through

a browser will show this interface.

34

9. Implementation

The project is implemented as a web application. There is a web based UI, and a backend that

does the core functionalities. The implementation of the two components are described below.

9.1. Front end implementation

The main function of the front end is to interact with the user and show data by fetching it from

the backend. To do these, an MVVM (Model View ViewModel) architecture has been followed in

the front end. To achieve an MVVM architecture, apart from the usual HTML, CSS and JavaScript,

the following libraries were used-

1. Axios (Model)

2. Bootstrap3, hacker-bootstrap (View)

3. Vue.js 2 (ViewModel)

Axios is an HTTP request library that fetches data from a server. In our case, axios gets data from

a REST API and constructs a JSON object which acts as our Model.

The view in our application is done through bootstrap3. Bootstrap3 makes the user interface

responsive to devices of different height/width ratios. Although our interface is not intended for

mobile devices, the responsiveness will be useful for large device of different ratios.

Apart from bootstrap we have used the hacker-bootstrap template as an extra layer over

bootstrap. This gives the makes the interface look professional looking and feel geeky.

The core of the front end is done through vue.js. We have used mainly the following features of

vue.js-

 Model binding ability: With model binding, two-way data bindings on form input,

textarea, and select elements can be created. This eases receiving data from the user

 Automatic DOM modifications: A change in model is automatically reflected in the DOM.

Through this, more time can be spent thinking about app logic and less on UI rendering.

 Separation of concerns: Through this, the application has been split over several

components. This makes development and management easier.

35

The front end code can be found at https://github.com/rafed123/ScanF/tree/master/client

The front end is structured as follows-

Figure 26: Front end structure

Everything inside a lib directory is a library. In the js directory attack.js, page.js, test,js and

website.js are vue components. Scanf.css contains custom CSS for the UI. Index.html contains the

HTML template of the entire front end.

9.2. Back end implementation

The main activity of the backend is receive data from the client, process it and send it back to the

client. The backend has been built as a REST API. To build the API and MVC architecture has been

followed. To build the backend the following libraries/technologies have been used-

1. beautifulsoup4 (v4.6): This is a library for parsing HTML content. This library has been used

to parse forms and its fields from an HTML file so that attacks can be performed upon them.

2. Flask (v1.0): Flask is a micro web framework for building python based web servers. This is

the main building point of the backend. Then entire backend is built around Flask.

cl
ie

n
t/

css/

lib/

bootstrap.min.css

hacker.css

scanf.css

js/

lib/

axios.min.js

bootstrap.min.js

vue.jsattack.js

page.js

test.js

website.js

index.html

https://github.com/rafed123/ScanF/tree/master/client

36

3. Flask-Restful (v0.3.6): This is an extension to the Flask framework. With Flask-Restful, making

REST based services become a lot easier. With Flask-Restful, controller and view part of the

MVC architecture is achieved. The view in our application is plain JSON.

4. requests (v 2.20): This library is used to make HTTP requests. With this library sites are

crawled for HTML content.

5. selenium (v3.141): This is a web driver library for running browsers. This library has been used

to drive Google chrome and perform attacks on websites.

6. Sqlite (v3): Sqlite is a lightweight database. All information of the ScanF system is stored in a

sqlite database instance.

7. SQLAlchemy (v1.2): This is a library to make database calls easier. SQLAlchemy provides an

easy way to make ORMs (Object Relational Mappers) which eases CRUD operations on a

database. With SQLAlchemy, the model part of the MVC architecture is achieved.

8. urllib3 (v1.24): This is a library similar to requests, but it has some additional features. This

has been mainly used to parse parts of URLs.

The backend of the project can be found at https://github.com/rafed123/ScanF. The backend is

structured as the following

Figure 27: Backend structure

Each directory/file in the structure is explained below-

b
ac

ke
n

d
/

model/

controller/

services/

app.py

routes.py

database.py

run.py

https://github.com/rafed123/ScanF

37

1. Model: This directory contains all the ORM models. The following models are present-

a. Basemodel.py (All models inherit this class so they can perform CRUD operations on

a sqlite database)

b. Website.py

c. Cookie.py

d. Page.py

e. Form.py

f. Field.py

g. Contraint.py

h. Test.py

i. Sql.py

2. Controller: Controllers define what kind of HTTP verbs a REST endpoint will have and what

operations will they perform. The following classes reside in the controller directory-

a. WebsiteController.py

b. CookieController.py

c. PageController.py

d. FormController.py

e. ScreenshotController.py

f. SqliController.py:

g. XSSController.py:

h. TestController.py

3. Services: This directory contains the core operations related to the main purpose of the

application. The following classes reside in this directory-

a. Crawler.py

b. Form_parser.py

c. Auto_Form_Fill.py

d. Screenshot.py

e. Sqli.py

f. Xss.py

38

4. Routes.py: This file defines all the endpoints of the application and which class will be invoked

upon receiving request on a particular endpoint.

5. Database.py: This file creates a database for the system if a database has not been created

for the system yet.

6. Run.py: This file initializes everything needed to run the tool and then starts the backend

server for the web client to use.

Thorough testing has been done on the backend. Discussion about testing has been done in the

next section.

39

10. Testing

This section discusses the testing approach for this tool and what tests has been done to ensure

quality.

The ScanF tool’s core functionalities are to perform SQLi and XSS attacks. Apart from this two

functionalities there are other modules that builds up a huge ecosystem that is aimed at making

the software well designed and easy to use. Both the core functions and the additional functions

for satisfying good design were tested for correctness and performance.

10.1. Approach to Testing

To test the application unit test and blackbox testing has been done. Unit test has been done on

the core features, i.e. the services module of the backend. Blackbox testing (equivalence

partitioning) has been done on the backend to test database integration and correctness of crud

operations.

10.2. Test tools

For testing, the following tools have been used:

1. Pytest (for unit testing)

2. cURL (for testing API calls)

3. Travis CI (for continuous integration)

10.3. Test items

 The following items have been tested:

1. API calls

2. CRUD operations

3. Services-

a. Website crawler

b. Auto form fillup

c. Response analyzer

40

10.4. Test cases

Test case: 1

Test case name: Controller test

Description: Try to perform CRUD operations on database through the REST API (Equivalent

partitioning blackbox test)

Steps Action Input test data Expected response Pass/Fail

1. Insert website to db url Inserted Pass

2. Retrieve websites None Retrieved Pass

3. Delete website Website_id Deleted Pass

4. Insert page to db Page_url,

website_id

Inserted Pass

5. Retrieve pages Website_id Pages of website with

that id

Pass

6. Delete page Page_id Deleted Pass

7. Insert cookie Name, value Inserted Pass

8. Update cookie Cookie id, name,

value

Updated Pass

9. Delete cookie Cookie id Deleted Pass

10. Insert form Page_id, action,

method

Inserted Pass

11. Retrieve form Page_id Forms of a page with

that page id

Pass

12. Delete form Form_id Form deleted along with

cascading fields and

constraints

pass

13. Insert fields Form_id, form

json

Inserted Pass

41

14. Insert constraints Field id,

constraint json

Inserted Pass

15. Insert tests Form_id, test

result

Inserted Pass

16. Retrieve tests Form_id All tests of a form with

that id

Pass

17. Delete tests Test id Deleted Pass

Test case: 2

Test case name: Crawler test

Description: Test whether the crawler can parse a website correctly (Unit test)

Steps Action Input test data Expected response Pass/Fail

1. Get website internal

links

Website url Correct number of links Pass

2. Get forms Page link Correct number of

forms, along with its

fields and constraints

Pass

Test case: 3

Test case name: Response analyzer

Description: Test whether the response after delivering a payload has message indicating

vulnerability (Unit test)

Steps Action Input test

data

Expected response Pass/Fail

1. Test a form which shows

error messages in payload

submission

Form id,

payload

Vulnerable Pass

42

2. Test a form which does not

show error messages in

payload submission

Page link Not vulnerable Pass

The tests of the tool can be found in https://github.com/rafed123/ScanF/tree/master/tests.

The repository is linked with Travis CI. So, every time a push is sent, the tests are automatically

run. This ensures integrity in every push. Following is a screenshot of the repository where the

test pass/fail status of the repository is show (Build: passing).

https://github.com/rafed123/ScanF/tree/master/tests

43

11. User Manual

ScanF is a tool to run SQL injections and cross site scripting attacks. These attacks can be

sometimes tricky and complex to perform. ScanF makes it easy to run and understand these

attacks. To run the tool, follow the instructions below.

11.1. System requirements

The following system requirements must be met before installing the tool.

 Linux OS (Debian based distributions)

 Minimum 2 Gb RAM

 Minimum 1 Gb of remaining disk space

 [Optional] Non proxy/non VPN internet connection (for best performance)

11.2. Install program dependencies

Follow the steps below to meet the requirements needed by the tool.

1. Install system requirements

Install Google chrome following this tutorial https://linuxize.com/post/how-to-install-

google-chrome-web-browser-on-ubuntu-18-04/

Install Python3.6, Python3-pip, Python3-virtualenv and Git

sudo apt-get install python3.6 python3-pip python3-virtualenv git

2. Open terminal and clone the repository

 git clone https://github.com/rafed123/ScanF

3. [Optional] Make a virtual environment. Virtual environment provides isolated environment

for python to run. This is not mandatory but highly recommended. Navigate to the

repository and run-

cd ScanF

https://linuxize.com/post/how-to-install-google-chrome-web-browser-on-ubuntu-18-04/
https://linuxize.com/post/how-to-install-google-chrome-web-browser-on-ubuntu-18-04/
https://github.com/rafed123/ScanF
https://github.com/rafed123/ScanF

44

virtualenv env

source env/bin/activate

4. Install dependencies

pip install –r requirements.txt

11.3. Using the tool

1. Run the application-

python run.py

2. Open the application in a browser (preferably Google chrome) and go to

http://localhost:5000

A user interface like the following will appear. On the top left bar enter the URL of a site you

http://localhost:5000/

45

want to scan and click Go.

3. Upon clicking Go, ScanF will start crawling the site and find all the links it can. If a scan takes

a long time (which will happen in most cases), stop the scan by clicking on the cross where

the Go button was before. Now you can see your scanned site on the website list.

46

4. Click on a website item to view all its crawled pages.

5. Sometimes you may need to crawl login protected links. To do this, you can add cookie by

copying it from the browser after logging in yourself. Click on [Add] on the Cookie panel and

the following form will appear.

To get a cookie go to a site (through Google chrome) and press F12. Go to “Application” tab

and go to “Cookies”. Here you can find name/value pair of a cookie. You can copy cookies

47

from here and paste it on the form.

6. It is more worthwhile to see the site itself rather than the its link. You can do this easily

from within ScanF. Simply click a page link and wait while the site loads.

48

7. On the list of pages you can see which pages contain forms. To test a form click on it and a

view like the following will appear.

8. On the Injections panel, you can choose which kind of attack you want to perform. For SQL

injections there are two modes- automated and manual injection. In automated mode,

choose a SQL string and click Go to perform automated attacks. Or you can manually insert

payloads yourself in the custom mode and send requests to test. Upon completion of tests,

the test lists will show some rows.

49

9. Click on the test item to see the results of the test.

10. The XSS tab also works the same way as SQL injection. Select a XSS payload from the list and

click on go. Results will appear on the XSS Result tab. Happy scanning!

50

11.4. Troubleshooting guide

 Error alerts: If the browser continuously alerts “An error occurred”, check if the local

server has stopped running. If it has stopped, restart it.

 Error alerts but local server running: Check if your internet connection is up or not. Also,

if this case is for an attack check if the target website is behind a firewall.

 Broken UI: If the UI seems out of place, try setting the browser zoom level to 100%. The

UI is not supported yet for small devices or with high zoom level.

51

12. Conclusion

I am pleased to say that I have had a wonderful experience developing this tool. Expressing

practical work on paper is a difficult task. Despite this I have tried my best to describe my work

accurately in this paper.

This paper covers all the aspect of building this tool from the very beginning to the end. At first

the software requirement specifications are discussed. Based on these requirements, the design

plan made is laid out. Then, according to the design, an implementation was made. The source

code of the implemented project can be found at https://github.com/rafed123/ScanF. The

implemented tool was finally tested. The test plan and results are also presented in this

document. And finally, so that anyone can use this tool properly, a user manual has been

provided.

I have learnt many things during the development of this tool. Mostly I have learnt about new

security concepts. Apart from that, I have also learnt some modern techniques that assist building

applications for the web.

This tool can be further extended in many ways. Currently it has support for only a few SQLk and

XSS payloads. More can be added. Also new types of attack can be added such as CSRF, LFI, etc.

I end this paper with the hope that this tool will be of use to anybody who wants to assess security

in their website.

https://github.com/rafed123/ScanF

52

References

[1] Brobin, Hacker css, https://brobin.github.io/hacker-bootstrap/, last accessed on 20th

November, 2018

[2] Vue.js, https://012.vuejs.org/guide/, last accessed on 20th November, 2018

[3] SQL-Injection-Payloads, https://github.com/trietptm/SQL-Injection-Payloads/, last accessed

on 10th November, 2018

[4] Pressman, Software Engineering: A Practitioner's Approach

https://brobin.github.io/hacker-bootstrap/
https://012.vuejs.org/guide/
https://github.com/trietptm/SQL-Injection-Payloads/

