
SPL-1 Project Report

HOSTMAN: A TCP/IP Packet Analysis Software

Course: SE 305: Software Project Lab I

Submitted by

Rafed Muhammad Yasir

BSSE Roll No. : 733

BSSE Session: 2014-2015

Supervised by

Dr B M Mainul Hossain

Assistant Professor

Institute of Information Technology

University of Dhaka

Submitted to

Rezvi Shahariar

Assistant Professor

Institute of Information Technology

University of Dhaka

Institute of Information Technology

University of Dhaka

01-05-2016

Hostman

i

Acknowledgement

At first I would like to thank almighty for helping me complete this project.

I would like to express my deepest gratitude to all those who provided me the support

and encouragement to complete this project. Special thanks to my project supervisor

Dr. B M Mainul Hossain, whose continuous suggestions and guidance has been invaluable

to me. Without such stimulating suggestions the project could not have made this much

progress.

I would also like to thank my teacher, Professor Mohammad Zulfiquar Hafiz, whose

classes on networking has been very informative and helpful for working on this project.

I am grateful to the Institute of Information Technology for giving me the opportunity to

do such a project.

Lastly I would like to thank my classmates. Discussing and sharing ideas with them

provided me valuable insights from time to time.

Sincerely,

Rafed Muhammad Yasir

BSSE 0733

Hostman

ii

Abstract

‘Hostman’ is a simple TCP/IP packet analyzing software that can analyze captured

network packets with the most common protocols of the TCP/IP suite. This report

discusses in detail how Hostman is designed, how it has been implemented and how it

works. The report also discusses the basic concepts needed behind building a packet

analyzer and their importance.

Hostman

iii

Table of Contents

1. Introduction .. 1

1.1. Broad Domain ... 1

1.2. Project Scope .. 2

1.3. Challenges .. 3

1.4. Software Requirements .. 3

1.5. Methodology ... 4

1.6. Achievements .. 5

2. Background Study ... 6

3. Analysis and Design ... 7

4. Implementation ... 8

4.1. Header files ... 8

4.1.1. packetHeaders.h .. 8

4.1.2. cmdOptions.h .. 9

4.1.3. packetBasics.h ... 9

4.1.4. miscFunctions.h ... 10

4.2. C Source files .. 10

4.2.1. main.c .. 10

4.2.2. miscFunctions.c.. 10

4.2.3. packetBasicInfo.c ... 11

4.2.4. packetDetails.c .. 11

4.2.5. packetDump.c .. 11

4.2.6. packetSearch.c .. 11

4.2.7. printUsage.c .. 12

4.2.8. followStream.c .. 12

5. User Manual.. 13

6. Program Outputs ... 14

6.1. Print usage.. 14

6.2. Print basic information .. 14

6.3. Print packet dump .. 15

6.4. Print all packet details .. 16

Hostman

iv

6.5. Print a particular packet details .. 17

6.6. Print packet details in range .. 17

6.7. Search packet by IP ... 17

6.8. Search packet by text ... 18

6.9. Follow packet stream.. 18

7. Conclusion .. 19

Reference ... 20

List of Figures

Figure 1: PCAP file format .. 4

Figure 2: Working pattern of Hostman ... 5

Figure 3: Design pattern of Hostman ... 7

Figure 4: Output of usage .. 14

Figure 5: Output of packet basics .. 14

Figure 6: Output of packet dump .. 15

Figure 7: Output of packet details ... 16

Figure 8: Output of particular packet details ... 17

Figure 9: Output of search packet by IP ... 17

Figure 10: Output of search packet by text ... 18

Figure 11 Follow packet stream ... 18

Hostman

1

1. Introduction

The main aim of this project is to make a simple packet analyzer called the Hostman.

The term Hostman comes from the two words ‘host’ and ‘postman’. Just like a postman

reads data associated with a post or a mail, the Hostman reads information associated

with a network host. A network host is a computer or other device (also known as a

network node) connected to a computer network.

There are many professionally written packet analyzers available in the internet such as

Wireshark, tshark, ettercap and tcpdump. Most of the professionally written analyzers

are GUI based. So they cannot be used in low level systems. And the ones that are CLI

based are more of ‘packet capturers’ and less of ‘analyzers’. So there are not many

suitable tools that has the sore capability of analyzing packets in CLI environment.

Hostman is made to fulfill this purpose. It is a console based tool made for UNIX systems

to analyze captured network packets from a pcap file.

1.1. Broad Domain

The internet is a big network of interconnected computers. Everything that we do in the

internet involves packets. A packet is simply a unit of data that is routed between an

origin and a destination on the internet. Every web page that we receive comes as a

series of packets and every e-mail we send leaves as a series of packets.

When a file is to be sent across a network it is broken down into several packets to an

efficient size for routing. The number of packets that are formed and the way they are

formed depends on the protocol that is used. A packet formed by breaking down not only

contains the data requested by the user but also some other information which are

added by the protocol such as the address of the source computer and the destination

computer. The individual packets are then routed across the network. Each packet may

take different routes. When they are all arrived, they are reassembled into the original

file.

A packet analyzer is a networking tool that can decode the content of a packet and see

its data. It analyzes the network traffic and generates a customized report to assist

organizations in managing their networks. A packet analyzers can be used to do things

such as:

1. Analyzing network issues and problems

2. Monitoring network security by detecting unauthorized attempts to hack the

network

Hostman

2

3. Monitoring bandwidth

4. Filtering unwanted contents

5. Preventing unauthorized access

1.2. Project Scope

Hostman is targeted to analyze packets of the TCP/IP protocol. The TCP/IP suite itself

contains over hundreds of protocols. That is why it requires a lot of time investment to

make a packet analyzer that supports all the protocols. Hostman is designed to

understand only the most common protocols that are used. The software can understand

details of the following protocols:

 Data link layer:

o Ethernet frame

 Network layer

o Internet protocol (IPv4)

o Address resolution protocol (ARP)

 Transport layer:

o Transmission control protocol (TCP)

o User datagram protocol (UDP)

 Application layer:

o Hypertext transmission protocol (HTTP)

o Hypertext transmission protocol secured (HTTPS)

Apart from these, there are some other protocols that Hostman can identify but not

understand the details, such as:

 Network layer:

o Internet Protocol (IPv6)

o Reverse address resolution protocol (RARP)

 Transport layer:

Hostman

3

o Internet control message protocol (ICMP)

o Internet group management protocol (IGMP)

 Application layer:

o File transfer protocol (FTP)

o Secure shell (SSH)

o Telnet

o Simple mail transfer protocol (SMTP)

o Domain name system (DNS)

o Border gateway protocol (BGP)

o Dynamic host configuration protocol (DHCP)

The scope of Hostman is limited within these protocols.

1.3. Challenges

The key challenges of this project are:

1. Parsing packet: In each layer of a packet data are stored in the format defined by

a particular protocol. Parsing packets according to different protocols is

challenging because while handling large files even if a single byte of information

is misread then the whole output will be wrong.

2. Working with bits: The lowest size of data we can work with in most machines is

a single byte. However packets contains information that are stored in bits. These

information are read using special techniques.

3. Handling endianness: Endianness refers to the order of bytes. Most modern

computers follow the little endian format i.e. least significant bytes are stored

first. However data communication over the internet occurs in big endian format,

most significant bytes are transferred and stored first. So when the packets are to

be interpreted it should be ensured that they are being read in the correct order.

1.4. Software Requirements

The software requirements are as follows:

Hostman

4

1. View of hex dumps of the packets along with their corresponding printable

characters.

2. Short description of all the packets in the capture file– source address,

destination address, packet size and used protocol.

3. Detailed description of the packets in the capture file. The user will have the

option to choose the packets which he wants to see.

4. A search option that can search in the packets for

o IP addresses

o Strings (in the application layer)

Search results will show short descriptions of the packets if they are found.

5. An option that can see the conversation between two hosts separately.

1.5. Methodology

Hostman works on pcap (packet capture) files. The structure of a pcap file is as follows:

Figure 1: PCAP file format

At the start of the file there is a 24 byte pcap header. After that there is a series of pcap

record headers and packet information which continues until the end of file.

The working structure oh Hostman is based upon this file format. The program has to

read byte by byte according to the structure of the file. A basic flow diagram how each

module of Hostman works is shown below:

Hostman

5

Figure 2: Working pattern of Hostman

1.6. Achievements

There were many achievements of this project:

 A deeper understanding of how the internet works

 Gaining basic networking skills

 Learning how to analyze packets

 Learning new coding techniques

 Leaning how to do a software project

Hostman

6

2. Background Study

There are several basic networking concepts that are required to fully understand the

project. Also some concepts of memory management in machines is required to

understand some techniques.

OSI model: The Open Systems Interconnection (OSI) model is a standard “reference

model” created by the International Organization for Standardization (ISO) to describe

how the different software and hardware components involved in network

communication should divide labor and interact with one another. It defines a seven-

layer set of functional elements, ranging from the physical interconnections at Layer 1

(also known as the physical layer) all the way up to Layer 7, the application layer.

TCP/IP: The internet protocol suite is the computer networking model and set

of communications protocols used on the internet and similar computer networks. It is

commonly known as TCP/IP. TCP/IP provides end-to-end data communication specifying

how data should be packetized, addressed, transmitted, routed and received.

Packets: A packet is simply a chunk of data enclosed in one or more wrappers that help

to identify the chunk of data and route it to the correct destination. Destination in this

sense means a particular application or process running on a particular machine. These

wrappers consist of headers and trailers. Headers are simply bits of data added to the

beginning of a packet. Trailers are added to the end of a packet.

Protocols: Networking protocols specify what types of data can be sent, how each type

of message will be identified, what actions must be taken by participants in the

conversation, precisely where in the packet header or trailer each type of required

information will be placed, and more.

Endianness: Endianness refers to the order of the bytes, comprising a digital word, in

computer memory. It also describes the order of byte transmission over a digital link.

Words may be represented in big-endian or little-endian format.

http://searchnetworking.techtarget.com/definition/physical-layer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Routing
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Word_%28data_type%29
https://en.wikipedia.org/wiki/Computer_memory

Hostman

7

3. Analysis and Design

The concept behind analyzing packets is quite simple; you just have to read byte by byte

and interpret the binary information in human readable form and print it. As per the

requirements, the program must have options for different output formatting. Also it

requires an option so that the user can choose what kind of output formatting he wants.

To do this a modular code structure will be the best for management. Each module will

handle a specific output format. The design diagram is shown below:

Figure 3: Design pattern of Hostman

Hostman

8

4. Implementation

Hostman is developed in ANSI C. As a result the style of coding style is structural. It’s a

command line driven program. The whole program has been compiled from 12 source

files:

Header files:

 packetHeaders.h

 packetBasics.h

 cmdOptions.h

 miscFunctions.h

C files:

 main.c

 miscFunctions.c

 packetBasicInfo.c

 packetDetails.c

 packetDump.c

 packetSearch.c

 printUsage.c

 followStream.c

4.1. Header files

The header files contain structures of the TCP/IP protocol, different macros and the

prototypes of some funcitons.

4.1.1. packetHeaders.h

This header file is the heart of the whole program. It is included in every other module.

This file contains the structs of the different headers: pcap file header, pcap record

header, Ethernet frame header and ARP, IP, TCP and UDP headers.

Hostman

9

The file also has some macros defined such as the size of different headers and hex

values for doing bit masking.

The Ethernet frame header and ARP header is shown below as a sample:

typedef struct ethernetFrame_s {

 uint8_t destinationMac[6];

 uint8_t sourceMac[6];

 uint16_t type;

} ethernetFrame_t;

typedef struct arpHeader_s {

 uint16_t hardwareType; /* Hardware Type */

 uint16_t protocolType; /* Protocol Type */

 uint8_t hwAddrLength; /* Hardware Address Length */

 uint8_t protoAddrLength; /* Protocol Address Length */

 uint16_t opcode; /* Operation Code */

 uint8_t senderHwAddr[6]; /* Sender hardware address */

 uint8_t senderIpAddr[4]; /* Sender IP address */

 uint8_t targetHwAddr[6]; /* Target hardware address */

 uint8_t targetIpAddr[4]; /* Target IP address */

} arpHeader_t;

To parse a packet, first it is stored in an uint8_t array. Then a pointer type

ethernetFrame_t struct (ethernetFrame_t*) is taken and the array is pointed to it. This

parses out the information of the first layer. We can know the protocol of the next layer

because it is mentioned in the Ethernet frame. Then depending on the type of the next

layer a pointer type struct of the next layer is taken and the array where the packet is

stored is pointed to that struct. In this way the whole packet is parsed and the data in it

is printed.

4.1.2. cmdOptions.h

The program is command line driven. The prototypes of the functions that are invoked

by the user are in this header.

4.1.3. packetBasics.h

This file contains the function prototypes that are required to show basic packet

information. This file s included in the packetSearch.c file so that the search results show

basic data of the found packets.

Hostman

10

4.1.4. miscFunctions.h

Some functions were separated from source files to miscFunctions.c so that those source

files remain organized. These functions were too small to make a separate source file for

them. As a result the source file miscFunctions.c was made which contains discrete

important functions. miscFunctions.h contains the prototypes of these functions.

4.2. C Source files

These files contain the actual functions that make the core of Hostman. They are

explained below in detail.

4.2.1. main.c

The program starts executing from here. It opens a pcap file and checks it validity. If it

is a valid pcap file it checks for the validity of the passed command line arguments. If

the arguments are valid then the corresponding function that the user chose is invoked.

After the operation is completed the file is closed.

4.2.2. miscFunctions.c

This file contains various discrete functions required throughout the whole program in

different places. The implemented functions are:

 uint16_t swap_uint16(uint16_t), swaps 16 bit integers

 uint32_t swap_uint32(uint32_t), swaps 32 bit integers

 void invalidArguments(), prints an error message when the command line

arguments are wrong

 uint8_t checkIfNumber(char*), checks if a string contains digits

 const char* checkIP(char*), checks if the ip address is valid or not

 const char* checkExtensions(char*), checks if the pcap file format is correct

 const char* determineEthernetProtocol(uint16_t), determines the protocol of the

layer after the Ethernet frame

 const char* determineIpProtocol(uint8_t), determines the protocol of the layer

after the network later

 const char* determinePort(uint16_t), determines the port name

 const char* flagSetOrNot(uint8_t), returns the string value whether a bit is set

or not

Hostman

11

4.2.3. packetBasicInfo.c

To print basic data of the packets it is necessary to parse the packet only up to from the

Ethernet frame to the network frame. When the function, void packetBasicInfo(FILE*) is

called it parses the packet up to the network layer and shows:

 source address

 destination address

 protocol

 packet length

4.2.4. packetDetails.c

The functions that print the packet details are written in this file. There are manly three

functions that do this:

 void allPacketDetails(FILE*), prints the details of all the packets present in the

file

 void selectedPacketDetails(FILE* , uint32_t), prints the details of a particular

packet that the user can specify

 void selectedPacketRangeDetails(FILE* , uint32_t , uint32_t), prints the details

of a specified packet range

4.2.5. packetDump.c

This file contains the function, void packetDump(FILE*) which prints the hexdump of the

packets and their corresponding ASCII characters (if they are printable).

4.2.6. packetSearch.c

Two search functions are implemented in this source file:

 void ipSearch(FILE*), gives users the option to search packets that contain a

particular IP address

 void textSearch(FILE*), gives users the option to search strings in the

application layer

Packet capture files can be very large in size. So searching strings can be a very time

consuming process. For faster searching of strings the KMP algorithm has been used

which can search texts in linear time.

The KMP function is defined as void kmpSearch(uint8_t* data, int32_t dataLen, char

*pattern).

Hostman

12

4.2.7. printUsage.c

This file contains, void printUsage(), which prints the usage of the program in case the

user needs to know the command line arguments in case he forgets them.

4.2.8. followStream.c

This is perhaps the most important feature of this program. When the function

followStream() with the specified arguments is called it prints the sole conversation

between two hosts (the application layer data). The data of the two hosts are printed

with a separate color code for each of them for easier readability of the conversation.

Hostman

13

5. User Manual

The commands that invoke the different functions of Hostman are given below:

 prints usage: ./Hostman

 print packet dump: ./Hostman <filename> -d

 print basic information: ./Hostman <filename> –b

 print all packet details: ./Hostman <filename> -v

 print a particular packet details: ./Hostman <filename> -v <packet no.>

 print packet details in a range: ./Hostman <filename> -v <start no.> <number of

packets>

 search packets by IP: ./Hostman <filename> ip

 search packets by text: ./Hostman <filename> -t

 follow packet stream: ./Hostman <filename> -f

Sample output of each command is given in the next section.

Hostman

14

6. Program Outputs

Some sample outputs of the program for the file “test.pcap” is shown below:

6.1. Print usage

Command in terminal: ./Hostman

Figure 4: Output of usage

6.2. Print basic information

Command in terminal: ./Hostman test.pcap –b

Figure 5: Output of packet basics

Hostman

15

6.3. Print packet dump

Command in terminal: ./Hostman test.pcap –d

Figure 6: Output of packet dump

Hostman

16

6.4. Print all packet details

Command in terminal: ./Hostman test.pcap –v

Figure 7: Output of packet details

Hostman

17

6.5. Print a particular packet details

Command in terminal: ./Hostman test.pcap –v 7

Figure 8: Output of particular packet details

6.6. Print packet details in range

Command in terminal: ./Hostman test.pcap –v 7 1

Produces similar output to Figure 7 and Figure 8.

6.7. Search packet by IP

Command in terminal: ./Hostman test.pcap -ip

Figure 9: Output of search packet by IP

Hostman

18

6.8. Search packet by text

Command in terminal: ./Hostman test.pcap -t

Figure 10: Output of search packet by text

6.9. Follow packet stream

Figure 11 Follow packet stream

Hostman

19

7. Conclusion

Packet analyzers are the pocket knife of any network engineer. Although the scope of

Hostman is not so big and its functionality is limited it can still be used by network

admins to analyze TCP/IP packets in their network. Information such as which ip

addresses are generating traffic, what kind of payload are being sent by users can be

seen using Hostman.

Also anyone who has interest in making packet analyzers can use Hostman as a

reference. By reading this report and studying the source code of Hostman a basic

concept behind building packet analyzers can be obtained.

Hostman

20

Reference

[1] Cormen, Leiseson, Rivest, Stein. Introduction to Algorithms. 3rd edition. Pg-1002

[2] Forouzan. Data Communications and Networking. 5th edition.

[3] Kurose, Ross. Computer Networking. 6th edition.

[4] http://searchnetworking.techtarget.com/definition/packet, TechTarget, last accessed

on 14-04-2016

[5] https://www.techopedia.com/definition/25323/packet-analyzer, TechoPedia, last

accessed on 14-04-2016

[6] http://www.itinfo.am/eng/software-development-methodologies/, Software

Development Methodologies, last accessed on 14-04-2016

[7] http://searchnetworking.techtarget.com/answer/What-is-the-difference-between-

OSI-model-and-TCP-IP-other-than-the-number-of-layers, TechTarget, last accessed on

15-04-2016

[8] http://www.wildpackets.com/resources/compendium/ethernet/ethernet_packets,

Wildpackets, last accessed on 15-05-2016

[9] https://en.wikipedia.org/wiki/Endianness, Wikipedia, last accessed on 16-04-16

[10] https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorith

m, Wikipedia, 16-04-16

http://searchnetworking.techtarget.com/definition/packet
https://www.techopedia.com/definition/25323/packet-analyzer
http://www.itinfo.am/eng/software-development-methodologies/
http://searchnetworking.techtarget.com/answer/What-is-the-difference-between-OSI-model-and-TCP-IP-other-than-the-number-of-layers
http://searchnetworking.techtarget.com/answer/What-is-the-difference-between-OSI-model-and-TCP-IP-other-than-the-number-of-layers
http://www.wildpackets.com/resources/compendium/ethernet/ethernet_packets
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm

